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ABSTRACT Typical industrial workcells are composed of a plenitude of devices from various manufacturers,
which rely on their own specific control interfaces. To reduce setup and reconfiguration times, a hardware-
agnostic Plug & Produce system is required. In this paper, we present a system architecture that uses generic
and semantically augmented OPC UA skills for robots, tools, and other system components. Standardized skill
interfaces and parameters facilitate flexible component interchange and automatic parametrization with a focus
on reusability of skills across different platforms and domains. The hierarchical composition of such skills
allows for additional abstraction through the grouping of functionalities. Through the extension of OPC UA
discovery services, available skills are dynamically detected whenever a manufacturing system’s component
is updated. The introduced Plug & Produce system is evaluated in multiple industrial workcells composed of
robots, tool changer, electric parallel gripper, and vacuum gripper—all controlled via the proposed OPC UA
skill interface. The evaluation of our system architecture demonstrates the applicability of the Plug & Produce
concept in the domain of robot-based industrial assembly. Although it is necessary to adapt existing hardware
to comply with the semantic skill concept, the initial one-time effort yields reoccurring efficiency gains during
system reconfiguration. In particular, small lot production benefits from reduced changeover times.

INDEX TERMS Flexible manufacturing systems, Manufacturing automation, Middleware, Plug & Produce,
Robotics and automation

I. INTRODUCTION

Flexible component integration is one of the major challenges
in Plug & Produce production environments. The main idea
behind the Plug & Produce concept is derived from the well-
known Plug & Play concept in the domain of computer
systems: a USB device can be plugged into a computer
and is immediately available to be used without the need to
manually provide a driver for it. Achieving the same level of
automated configuration and interface description in manu-
facturing shop floors is still a major challenge. The Multi-
Annual-Roadmap (MAR) of the EU SPARC programme [1]
emphasizes configurability as one of the key system abilities
of Plug & Produce systems. In [2], the authors present
agile manufacturing as a key technology for coping with
rapidly changing customer requirements. They identify major
research demands regarding the definition of component
interfaces using scientific knowledge [3].

The main motivation behind a Plug & Produce system is
its flexibility to adapt to new production requirements due to
rapidly changing market demands. In contrast, typical mass
production lines are optimized to produce one specific prod-
uct variant in high numbers at low cost. Industrial automa-
tion components are mainly developed with manufacturer

or domain-specific interfaces and require time-consuming
adaption of control applications every time the product spec-
ification changes. On hardware failure, only devices with the
exact same specification can be used as a replacement.

The higher the variability of the product, the more flexible
a production line has to be. For small lot production down
to even lot size one, the goal is to produce items cus-
tomized to the buyer’s needs. Such products only exist after
the buyer provides the associated specifications. Therefore,
production systems must offer higher flexibility and more
efficient reconfigurability to adapt to these circumstances. To
achieve automatic configuration and information exchange
without the need of reprogramming automation tasks, one of
the basic requirements is a generic standardized component
interface. Furthermore, it needs to be extensible to not only
accommodate current devices and system components, but
also future requirements in a highly dynamic market.

II. RELATED WORK
Robots are one of the enabling technologies for the current
shift from mass production to mass customization. Robots
represent the core components of associated production cells.
The OPC Foundation recently released the OPC UA (Open
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Platform Communications Unified Architecture) Companion
Specification for Robotics Part 1 [4], which is a first step in
the direction of standardized OPC UA information models
for industrial robots. While the first part mainly defines read-
only access to status variables for predictive maintenance,
a control interface for the high-level control of program
sequences is planned for future parts. However, the proposed
specification still does not include a control interface for
specific motions. Efficient programming of industrial robots
for small lot production is still a highly researched topic [5].

Skills are one of the current approach to provide efficient
robot programming. They can be seen as a tool-centric ap-
proach to process modeling and execution that simplifies
the abstraction of functionalities provided by hardware and
software components [6]–[8]. In [9], a model-based manip-
ulation system with skill-based execution is shown, which
focuses on controlling a specific robot type through skills.
Hardware-independent robot control in the Robot Operat-
ing System (ROS) is implemented via ros_control [10] or
similarly through a specific Hardware Robot Information
Model (HRIM) [11]. The approach in [7] focuses on con-
trolling robots, but does not provide a generic well-defined
interface for other hardware components, such as grippers, to
achieve flexible component exchange. Pedersen et al. further
lists various advantages of using skills in combination with
production systems, i.e., they are generic and allow a higher
product variety, provide an abstraction layer for the hardware,
as well as a more intuitive way for programming robot
behaviors [12]–[15].

Control on Field-Device-Level with OPC UA is shown
in [16] and [17], where the authors control devices through
OPC UA programs. Compared to our presented approach,
automatic discovery and standardized common interfaces
are missing. This is a necessary feature of Plug & Produce
systems as explained throughout this paper.

The term Plug & Produce was shaped around the year 2000
by Arail et al. [18]. The authors describe the core concept of
Plug & Produce as a methodology that allows to introduce
new manufacturing devices easily and quickly into produc-
tion systems. Since then, various approaches were presented
to realize Plug & Produce systems. For instance, [19], [20]
focus on using AutomationML for establishing a flexible
system architecture. The goal is to simplify the modeling of
manufacturing skills ot technical devices.

In [21], a Plug & Produce system is proposed that focuses
on the theoretical background of mapping skills to products,
processes, and resources. Compared to our approach, they
use a custom-developed model that does not build upon well-
established standards such as OPC UA. A combination of Se-
mantic Web technologies and OPC UA is shown in [22]. The
authors propose to use a central database to store semantic
device information. This may be difficult to achieve on shop
floors, in which devices are regularly exchanged, and when
new devices or device types hit the market.

Our approach eliminates this disadvantage via self-
describing components without the need for a preconfigured

central data storage, while still supporting both, central and
de-central storage for the self description. As shown in [23],
self-describing devices are essential for building a Plug &
Produce system that allows exchanging components inde-
pendent of the overall system. The implementation of a skill
can only be applied directly on the device, therefore the de-
centralized storage avoids decoupling of the overall device
description.

Other approaches based on IEC 61499 function blocks
use custom communication protocols for the connection of
components [24], [25]. In [26], a set of services for a service-
oriented architecture based on OPC UA is presented. How-
ever, automatic discovery was not included in the system.

A reference architecture for a Plug & Produce system
based on OPC UA and PLCopen is presented in [27], [28].
In a similar approach [29], the authors base their architecture
on a IEC 61131 runtime, while others focus on transforming
EDDL descriptions into the OPC UA address space [30].
These publications mainly use field devices and the presented
architectures are therefore suitable for signal mapping, but
not for a generic skill concept. Still, the authors show that
the presented Plug & Produce concept “enables a faster
commissioning process and minimizes the risk for human
error due to high automation”.

Another relevant approach is the Reconfigurable Manufac-
turing System (RMS) paradigm. It is defined as a system “for
rapid adjustment of production capacity and functionality, in
response to new circumstances, by rearrangement or change
of its components” [3]. Such components can be hardware
or software. A robot cell based on the RMS paradigm using
ROS is shown in [31]. As described in Section IV, ROS
does not perform as well as OPC UA, and the semantic
expressiveness regarding information exchange is limited.
In [32], a combination of specialized web services and se-
mantic descriptions is used for controlling a small production
cell with a strong focus on high-level integration. The low-
level device abstraction concept required for Plug & Produce
is missing.

Our proposed solution aims at providing a complete and
generic system architecture based on standardized skill mod-
els that can be applied to any type of component in the
system, be it hardware or software. In doing so, we focus
on reusing well-established standards such as OPC UA and
keeping the number of interdependencies as low as possible,
e.g., by building on the discovery mechanisms of OPC UA
and supporting standardization activities in various active
working groups.

The presented system architecture is built on top of our
prior work [33]–[35]. In this paper, we extend the previously
conducted middleware evaluation [33] by a set of require-
ments for a suitable middleware protocol used in Plug &
Produce environments. The robot-specific skill model in [34]
is extended and refined, to not only cover hardware compo-
nents, but also to serve as an abstraction layer for software
components. The definition of additional skill types in this
paper shows the generic applicability of the skill model. This
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FIGURE 1. System architecture for realizing a Plug & Produce system with generic device skills. Based on OPC UA as a middleware, the discovery services are
combined with our skill detector for automatically registering components and their skills. The semantic skill model provides low-level abstraction and hierarchical
composition of functionalities. Our semantic MES uses a knowledge base to relate semantic skill information with process knowledge in order to execute skills.

enables a Plug & Produce system to seamlessly interchange
hardware and software components, if they offer the same
types of required skills.

In [35] we described the basic concept behind the OPC UA
discovery mechanisms. Based on this, we present here a
new mechanism for automatic component and skill detection
combined with the semantic knowledge in a Knowledge
Base. The execution of these skills is managed by our newly
proposed semantic manufacturing execution system. In this
paper we also evaluate the overall system composed of pre-
viously presented concepts extended with the new concepts.

III. SYSTEM ARCHITECTURE
Fig. 1 depicts the holistic system architecture for flexible skill
integration and execution, which combines a set of individual
concepts, which are introduced in this section. The specific
parts of the presented architecture are described in more
detail in the subsequent sections.

A substantial part of automation systems is information,
the processing of information, and the flow of information.
In order to exchange information, system components need
to use a common communication basis, also referred to as
middleware. For a Plug & Produce system, a middleware
needs to support a specific set of features, and more im-
portantly, provide an adequate performance for exchanging
information between different components. In this work, we
discuss the requirements of such middlewares, and justify our
decision to build our system on top of OPC UA based on our
performance evaluation and feature comparison of different

middlewares (see Section IV).
In Plug & Produce systems, it is essential to have an up-to-

date list of available components, in order to be able to assign
manufacturing tasks to suitable components. Additionally, a
well-defined standardized control interface is required, such
that underlying hardware-specific skill implementations can
be exchanged while maintaining the same interface to higher-
level applications. In this context, we define a skill to be a
specific realization of a functionality that is provided by a
hardware or software component. We propose a mechanism
to automatically detect plugged-in and plugged-out compo-
nents and their offered skills (see Section V) based on a
generic skill model (see Section VI).

Through the mapping of device descriptions into corre-
sponding ontologies, including the specifications of offered
skills and their parameters, we show how formal knowledge
and reasoning in combination with our semantic manufactur-
ing execution system (sMES) can be used to parametrize the
execution of these skills (see Section VII).

The system was evaluated in real robot workcells that
are composed of industrial robot arms and tools, i.e., tool
changer, vacuum gripper and parallel gripper. Our evaluation
shows that the architecture supports the automatic detection
of available skills in the robot cell, the abstraction of execu-
tion parameters, and the compositional grouping of skills (see
Section VIII). While our approach targets robot-based manu-
facturing systems and is built on top of the OPC UA standard,
it could also be applied to other domains or middlewares.
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IV. MIDDLEWARE
In [36], a middleware is defined as distributed system ser-
vices with standard programming interfaces and protocols
helping to solve customers’ heterogeneity and distribution
problems. These services are called middleware, because
they sit “in the middle”, layering above the operating system
and networking software, and below specific applications.

In the industrial automation domain, a middleware bridges
the gap between software applications of various program-
ming languages and individual subsystems on different hard-
ware platforms and operating systems, in order to exchange
information between components. The importance of this
information is growing proportionally with the size of such
systems. A first attempt in structuring the information flow
was done within the scope of computer-aided manufactur-
ing (CAM) [37]. As a result, a strict subdivision of infor-
mation processing into hierarchical levels was suggested,
which is nowadays known as the automation pyramid. The
automation pyramid itself is not standardized, but is rather
a concept that helps in structuring information flow [38].
Typically, each layer within the automation pyramid uses
different protocols and middlewares to exchange data within
one layer and with other layers, from high-level Ethernet-
based communication protocols to low-level field buses. With
the success of Ethernet-based networks, significant effort was
directed into getting this protocol down to the lowest field
level to avoid a strictly layered architecture and to enable
the transition to a fully interconnected system with a single
middleware [39].

Over the last two decades, different middlewares and stan-
dardized protocols have been developed. In [33], we have
compared the features of various middlewares and evaluated
their overall performance. We focused on middlewares that
have a high relevance in the domain of industrial automation
and the Internet of Things (IoT): OPC UA, DDS, ROS, and
MQTT. The interested reader is referred to that publication
for a more detailed analysis of these middlewares. We show
that OPC UA provides flexible means to semantically model
information that is supposed to be shared with other com-
ponents. The approach is similar to object-oriented program-
ming, where specific types can be extended and instantiated,
and objects can be semantically enriched by using specific
reference types to link to other nodes inside the graph-based
data model. ROS is mainly used for research purposes and
provides many different pre-implemented feature packages.
Its recently released successor ROS2 is based on DDS and
benefits from better network performance, while not of-
fering as many features as ROS. DDS (Data Distribution
Service) has an extensive set of Quality-of-Service settings,
whereas MQTT (Message Queuing Telemetry Transport)
mainly focuses on a lightweight publish/subscribe proto-
col. The round-trip-time (RTT) performance evaluation with
varying payload sizes and under different conditions (idle,
high cpu load, high network load) has shown that the eval-
uated implementations, namely open62541 for OPC UA
and eProsima FastRTPS for DDS deliver high performance,

whereas the used prominent open-source MQTT and ROS
implementations show a significant slowdown in the package
RTT.

As an extension to this previously conducted performance
evaluation, we identify essential requirements for a middle-
ware that is suitable for Plug & Produce systems and support-
ing the key characteristics of reconfigurable manufacturing
systems (RMS) [3]. For each requirement, we briefly list
the level of adoption by the introduced middlewares, i.e.,
OPC UA, ROS, DDS, and MQTT.

For flexible component integration, Reconfigurability is
an essential requirement, which needs to be supported by the
middleware. This is achieved by reducing the amount of nec-
essary pre-configurations, e.g., through the use of dynamic
IP addresses and discovery mechanisms. While OPC UA and
DDS come with a discovery implementation, which does
not rely on statically defined IP addresses, ROS and MQTT
components need to be configured for a specific roscore or
MQTT broker.

With an increased number of components in a manufactur-
ing system, Scalability becomes more and more important.
Especially for close-to-hardware implementations of compo-
nents on small footprint microcontrollers, poor scalability
may have a huge negative impact. As shown in our per-
formance evaluation, the performance of ROS is drastically
reduced when 500 ROS nodes transmit data simultaneously,
followed by MQTT where the bottleneck is the broker-
dependent data communication. DDS and OPC UA deliver
good performance, even with a large number of components.

For low-level component control in the domain of indus-
trial automation, Real-Time Capability and Security are
additional requirements, which need to be supported by a
Plug & Produce middleware. ROS is the only middleware in
our examination that does not support data encryption. It also
only supports best-effort data transmission. DDS and MQTT
use Quality-of-Service definitions for real-time data trans-
mission. OPC UA is integrating Time-Sensitive Networking
for real-time support and has the best support for various
encryption and authentication algorithms.

As we show throughout this paper, a middleware used in
Plug & Produce systems needs to support Semantic Descrip-
tion of its data. OPC UA is the only middleware listed above
that supports rich semantic information models, where the
knowledge is stored as a combination of triples (source node,
reference, target node) forming a directed graph. Access
to the address space of an OPC UA-enabled component,
which holds its information model, is provided through a set
of services, e.g., for variable reading, writing, or calling a
method.

Based on these requirements, OPC UA is an ideal mid-
dleware for future-proof automation systems supporting the
Plug & Produce concept. Furthermore, OPC UA was se-
lected as the core communication protocol for flexible pro-
duction lines in the Reference Architecture Model Industry
4.0 (RAMI 4.0) [40]. Therefore, the system architecture
presented in this paper is based on OPC UA.
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V. COMPONENT AND SKILL DISCOVERY
To achieve a more Plug & Produce-friendly setup without
any factory-specific pre-configuration, components need to
be able to automatically discover other components in the
system. The discovery mechanism has to detect when a
component is plugged into the system or is already online
and when such a component is unplugged again. In addition,
the skills offered by a component have to be detected as well,
in order for the system to be able to consider them when
assigning tasks to specific components.

OPC UA initially used a Web Service-based discovery
mechanism [41]. Since 2015, it includes a decentralized
server discovery mechanism, called Local Discovery Server
with Multicast Extension (LDS-ME) [42]. In [35], we show
how LDS-ME can be used for easy integration of new
devices into the network without any network-specific pre-
configuration. On startup, an OPC UA server is broadcasting
multicast DNS (mDNS) messages to the subnet. This notifies
other LDS-ME servers about the new server instance and
they respond with a mDNS message to announce themselves.
With this information, the newly started server can choose
a corresponding OPC UA server to register itself. During
the server’s lifetime, additional mDNS messages are broad-
casted, and a re-register call is made every 10 minutes to
indicate the alive status. Before shutdown, the server unregis-
ters itself and the LDS-ME implementation sends out another
message indicating its imminent shutdown.

The LDS-ME mechanism can only be used to detect the
availability of new components, but does not support the
detection of specific skills that are offered by these com-
ponents. The only information that is directly exchanged
during the server registration is the ApplicationDescription
structure, which is defined in the OPC UA standard. It only
contains basic information on the server, e.g., the application
name and URI or discovery URLs. This information does
not suffice to detect the functionality, i.e., the skills of a
specific component. Building on these concepts, we extend
the described OPC UA discovery mechanism, in order to
be able to not only detect new server instances, i.e., system
components, but also their offered skills in an automatic
fashion.

We propose a Skill Detector module, which is able to
detect skills of newly plugged-in components. It is located in
every component that depends on skills of other components.
The Skill Detector reacts on the multicast messages, as shown
in Fig. 2. Right after a component announces its availability,
Skill Detectors inside existing components connect to the
newly announced OPC UA server and browse its address
space for available skill types. At the same time, the newly
connected component’s Skill Detector browses all other com-
ponents for available skills. An internal map is used to keep
track of the mapping of skill types to server instances. On
skill execution, the availability of all required sub-skills is
checked. Up to that point, the order in which components
are started is not restricted. On component shutdown, the
Skill Detector updates its map to remove skills that are not

FIGURE 2. Skill detection and execution sequence between two components:
server announcement, skill detection, skill execution, and component
shutdown. The skill detector always keeps an up-to-date map of available skills
for each component.

available anymore.
By default, the re-register period of an OPC UA server is

10 minutes indicating to other servers that it is still alive. Dur-
ing graceful shutdown, the component unregisters itself, but
in some failure states, e.g., a broken network connection, this
timeout may be too long for Plug & Produce systems. There
are two solutions proposed in our approach: a skill client uses
a connection timeout of two seconds, and independent of the
standard, a server may periodically send mDNS queries to
update its list of available servers.

Nestability of Industry 4.0 components, as defined in
RAMI 4.0 [40], can be achieved by using multiple subnets,
e.g., on the workcell level, to encompass other components
in logical terms and to abstract away the underlying compo-
nents on a higher level using skill composition as described
in the following sections of this paper. An alternative to
hierarchical grouping is the use of software-defined network-
ing (SDN) as shown in [43].

VI. GENERIC COMPONENT SKILLS
One of the key pillars of a generic system architecture for
Plug & Produce systems is a common interface description
for all of its components. In this regard, a component can be
either a hardware device or a pure piece of software, which
both provide one or multiple skills to other components of the
manufacturing system. In addition, higher-level skills should
be hierarchically composable by reusing and depending on
other skills. As a result, more complex functionalities can be
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built through the combination of more basic ones. All prop-
erties and parameters of a particular skill must be described
in a formal manner to enable other components that rely
on this skill to automatically infer required skill invocation
parameters and to reason about the purpose of interacting
with it.

A. GENERIC SKILL MODEL
In [34], we describe the foundation for a generic skill model.
Every skill type is based on the SkillType OPC UA object
type, which is a subtype of the OPC UA ProgramStateMa-
chineType [42]. A skill is represented as a state machine with
specific states, i.e., Halted, Ready, Running, and Suspended,
and transition methods, i.e., Halt, Reset, Resume, Suspend,
Start, which can be used to control skill execution and to
infer a skill’s current state. Additionally, the state machine
inherently provides interlocking functionality by preventing
state changes while the skill is running.

This section describes two important extensions of the
introduced skill model: first, we define additional skill types
for tool changers, grippers, and software components such as
a Pick-and-Place skill. Secondly, this section describes the
requirements and extensions of the basic model to enable the
automatic discovery and control of components. If a skill
implements a specific type, all of its supertypes are also
implemented. For instance, a robotic hand could implement
a more specific hand grasp skill type (subtype of Grasp-
Skill), while a parallel gripper could implement a force grasp
skill type (subtype of GraspSkill). Both tools still need to
support the basic GraspSkill parameters and therefore other
components can still use that skill level, even if they only
know the GraspSkill type, but not its more specific (vendor-
specific) types. In this case, the more generic skill execution
must intelligently choose internal parameters in order for the
semantics of the base skill to be valid, e.g., the fingers are
closed until a specific force value is measured or in case of
a vacuum gripper a specific pressure threshold is reached.
Alternatively, it must use a different supertype.

B. SKILL COMPOSITION
An Industry 4.0 component typically offers one or multi-
ple skills to higher-level components or applications. Such
a component can either directly provide its functionality
through its own implementation, or it can provide a higher-
level skill functionality by depending on lower-level skills
and combining their functionalities. This concept is referred
to as skill composition and an example is shown in Fig. 3.
On the right-hand side of the figure, there are two types of
robot and tool combinations, each offering a specific set of
skills, and a device adapter for a tool changer. A software-
based skill component, which is built upon lower-level skills
such as gripper and robot skills, can be developed to form
the same type of interface as an already given Pick-and-Place
skill. Similarly, a tool changer skill can be used to control
the robot and to read the states of the tool changer and the
currently attached tool. Defining a composed skill is a manual

FIGURE 3. Hierarchical composition of skills. Software components are used
to define new skills based on combining lower-level functionalities, e.g., a Pick
and Place skill is composed of separate robot and gripper skills.

task, since specific base skill types need to be chosen and
the corresponding control of lower-level skill state machines
needs to be implemented. If a specific skill type definition
exists for the implemented composed functionality, this skill
type should be re-used (e.g., Pick-and-Place skill).

C. SPECIFIC SKILL TYPES
Fig. 4 depicts a simplified overview on the skill types that
were implemented in our evaluation setup, grouped by the
corresponding Companion Specification. An OPC UA Com-
panion Specification is a specific group of well-defined items
in the OPC UA information model. The basis for all specifi-
cations is the OPC UA Default Namespace. Building on top
of this, we define specific skill types in separate companion
specifications: Device Skills, Robotic Skills, Gripper Skills,
Toolchanger Skills, and Composite Skills.

Every skill implementation needs to refer to a specific
skill type. This is necessary for automatically detecting and
interpreting the purpose of a skill implementation and its
required parameters, in order to enable other components to
interact with it (see Section V). Parameters and properties of
the ProgramStateMachineType, SkillType, and skills defined
in the Robotic Skills specification are described in [34] and
not discussed in more detail here. An example of a robot skill
is the CartesianLinearMoveSkillType with several required
parameters such as TargetPosition or MaxVelocity. The set of
skill types introduced in this paper represent a subset of skills
required for the operation of our test bed and its evaluation.
Further skill types need to be standardized in future work to
support more devices and functionalities.

Both the GraspGripperSkillType and ReleaseGripperSkill-
Type are generic skills for any kind of gripper. The semantics
of a grasp is defined as activating the gripper hardware in
such a way that an interaction object positioned at the grasp
point is getting attached to it, e.g., a parallel gripper is closing
its fingers, while a vacuum gripper enables its suction system
to attach the object. Skill states are used to indicate the
success or failure of a grasp attempt. Release is defined as the
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FIGURE 4. Extended OPC UA skill model based on [34] with gripper skill types, tool changer skill types, and a hierarchically composed pick-and-place skill type.
Grey boxes represent different companion specifications, e.g., the base OPC UA data model and domain-specific information models on devices or robotics.

opposite action directly implemented inside the skill, e.g., de-
taching the object by opening the parallel gripper or disabling
the suction system. However, the specific implementation of
the skill inside the component is not defined by our model
as it differs for specific gripper hardware. If a component
implements a specific skill, it must adhere to the defined
functionality, to enable other components to rely on it.

Parameters for the grasp skill are the grip point offset
(3DFrameType, offset from the tool mounting plate to the
grip point) and grip point type (Enumeration, i.e., parallel,
vacuum-based, or multi finger). For a robot movement, the
grip point offset is required to move the robot with the
attached gripper to the correct position. The gripping type
is required to adapt the grip point offset based on the object’s
shape: a vacuum gripper normally picks up an object from
the top, while a parallel gripper needs to be positioned
further down the object to grasp it from the side. Specific
grippers may implement multiple instances of a grasp skill to
represent multiple grasp points or implement more specific
subtypes giving the skill callee more parametrization options.
It may also be necessary to define a new basic skill type with
a more flexible interface for grip points.

Similar to the gripper skill types, the DetachToolSkill-
Type, AttachToolSkillType, and ChangeToolSkillType define
the semantics of a tool change task. The semantics of the
detach tool skill is to detach a tool, if there is one currently
attached, and to place it at the given location. The attach
tool skill attaches a new tool to the tool mounting plate.
The change tool skill is a combination of first detaching a
tool if present, and then attaching a new tool. In addition,
the skills need to include a reference to a movable compo-
nent, on which they are mounted, e.g., a robot flange. This
definition does not restrict how the tool changing steps are
performed. For instance, the type of motion component can
be a robot arm, or any other actuated device, such as a linear
axis. Therefore, the connected motion component defines the
specifics of these kinds of tool change skills, which cannot
be used as stand-alone skills. In our experiment, the tool
changer indicates a connection to a robot component and uses
its CartesianLinearMoveSkillType to reach the tool docking
station. As a result, upper-layer components do not need
to directly control the underlying moving device. This is

handled by the specific implementation of the tool changer
skill component and its way of parameterizing underlying
skills. Depending on the tool changer’s locking mechanism,
different robot movements or I/O control may be necessary to
attach or detach a tool. Attach tool, detach tool, and change
tool provide the move skill controller endpoint as a read-
only parameter (String). It can either be configured statically
or automatic skill detection can be used to find the correct
endpoint (Section V). In addition, these skills require an
input parameter tool position (3DFrameType), which expects
the absolute coordinate frame (position and orientation) of
where a tool should be picked up or placed. If the skill
implementation is not able to reach this position, the skill’s
state machine should change to the halt state to indicate
an error. Attach tool and change tool require an additional
parameter tool app URI (String) to detect the ready state of
the newly attached tool via automatic discovery.

The PickAndPlaceSkillType is a composite skill, as it
reuses other skills that are available in the system, e.g.,
gripper skills and move skills. Pick-and-Place is semantically
defined as picking an object, which is identified by a specific
ID, with the given tool, moving the manipulator, and placing
the object at a given position with a given orientation. The
caller can rely on the effect that the given object is moved to
the target position after successful completion. It does not
have to know how this is achieved. The list of skill input
parameters does not include the object size or additional
grasping parameters. The object ID is used internally by the
implementation to find the object location and its properties
in either a dedicated world model component (out-of-scope
of this paper) or using an object detection skill. To find
suitable grasping parameters, a grasp planning component
could be used. This generic definition does not limit the
trajectory of the robot or other motion components. If more
specific options are required (e.g., advanced collision avoid-
ance, move with force feedback), specific subtypes of this
generic Pick-and-Place skill can be introduced to represent
that functionality for higher-level components using addi-
tional parameters. The corresponding skill implementation
still needs to be developed manually once.

Our definition of a generic Pick-and-Place skill requires
four writable parameters. Aside of the already mentioned
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object ID (String), the tool skill controller endpoint (String)
and move skill controller endpoint (String) OPC UA endpoint
URLs of the tool and move component need to be given and
are used to grasp and transport the tool with the attached
object from the pick position to the place position. The
place position (3DFrameType) parameter indicates the target
position and orientation for the object. Depending on the
Pick-and-Place skill implementation, the move component
can be a robot with a Cartesian linear move skill or any other
component that controls the tool position. There can also be
multiple skill implementations of a particular type at the same
time with different implementation specifics. It is then up to
the higher-level component to select the most suitable one.

VII. DEPLOYMENT OF A MANUFACTURING PROCESS
In the previous section, we describe a generic skill interface
for OPC UA-enabled components that require parametriza-
tion before the skill can be executed. In this section, we
present a semantic representation of these skills in ontologies,
in order to endow manufacturing systems with the capability
to link the skill models with additional types of knowledge
from other sources such as semantic process descriptions,
product models, or models of the production environment
and the contained resources. The combination of our seman-
tic manufacturing execution system with a knowledge base,
in which the ontology-based representations are stored, is
used to intelligently parametrize, trigger, and monitor the
execution of higher-level skills.

A. SEMANTIC NODESET REPRESENTATION
The OPC UA information model provides the device self de-
scription. Specific details of this self description are defined
in various companion specifications and are out-of-scope of
this paper. This information model is typically provided in
NodeSet2 XML descriptions.

In [44], we show how NodeSet2 descriptions can be au-
tomatically transformed to an ontology-based representation,
that allows to link the encoded information to other semanti-
cally represented models regarding, e.g., geometry, workcell
layout, device topology, and process and product models.
This approach includes the development of a core OPC UA
ontology using the Web Ontology Language (OWL2) [45].
Using OWL2, class and property taxonomies, as well as in-
stantiations of these concepts can be described and reasoned
about.

The OPC UA core ontology specifies the base classes of
the OPC UA data model and their relations. An excerpt of
its upper taxonomy is shown as part of Fig. 5. The OPC UA
address space specification [42] defines eight types of nodes,
i.e., Object, ObjectType, Variable, VariableType, Method,
DataType, View, and ReferenceType. Each of these node
types are represented as an OWL class. Instantiations of these
classes are further characterized through a set of asserted
object and data properties. The ontology is available online1.

1https://github.com/OntoUA
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FIGURE 5. Subset of UA NodeSet ontologies of the components used in the
evaluation and their hierarchical dependencies: OPC UA core ontology with its
upper taxonomy, base UA NodeSet, and official OPC UA companion
specifications for Devices and Robotics, skill extensions to these companion
specifications, and device-specific NodeSet ontologies. Black arrows show
owl:imports relations.

In this paper we use the described concept to transform our
newly defined companion specifications along the hierarchi-
cal tree of dependencies into their corresponding OWL rep-
resentations. As a result, there is a dedicated OWL ontology
for the base OPC UA NodeSet, companion specifications,
as well as hardware and software components. Fig. 5 shows
the generated UA NodeSet ontologies and their dependency
structure for the components used in the evaluation of the
proposed concept (Section VIII-B), i.e., a Universal Robots
UR5 robot, a Kelvin tool changer, and a Schmalz vacuum
gripper. The following subsections describe how these mod-
els are used in combination with a Knowledge Base to
parametrize skill executions.

B. KNOWLEDGE BASE
The Knowledge Base (KB) is responsible for persistently
storing all relevant knowledge of the production system as
described further below. It provides both an OPC UA-based
and a REST-based interface for enabling other components
of the Plug & Produce system to interact with the knowledge
through SPARQL queries and update requests. The knowl-
edge representation itself uses ontology-based semantic de-
scription languages that have been defined with the help
of OWL2. The KB further provides means to interpret the
semantic models in order to check for logical inconsistencies
and to automatically infer implicit facts from explicitly rep-
resented knowledge.

Apart from manufacturing resources, the KB holds infor-
mation on the manufacturing process and its subtasks as well
as the product to be manufactured. This includes individual
processing steps and their interdependencies and a boundary
representation (BREP) of geometries.

The KB subscribes to the components’ mDNS messages,
and gets notified on changes in component availability. Using
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the namespace URIs loaded into the component, the KB can
download additional NodeSet2 descriptions from a remote
location, automatically convert them to OWL2, and load the
ontology. NodeSet2 descriptions define offered skills and
contain physical properties of a device. Based on the UA
NodeSet2 ontologies, information on system components
and their skills are available in the knowledge base and can be
combined with other sources of information to select suitable
skills for a specific manufacturing task. In this representation,
the components and skills can be linked from semantic
process descriptions and required skill parameters can be
retrieved and set.

Relevant for production system engineering and the se-
mantic interoperability of manufacturing resources, the of-
fered skills can be annotated with capability metamod-
els, which provide a semantic understanding of a skill’s
scope [46]. Using inference and querying, required skill pa-
rameters are gathered based on the currently available context
knowledge. For instance, a grasp skill’s target span can be
derived from the geometry model of a rigid interaction object
and an annotated grasp pose.

We further show in [47] how the explicit representation
and interpretation of rich semantic context information along
the value chain of manufacturing companies leads to the cre-
ation of a knowledge-based data backbone that can be used
in combination with the skill-based production paradigm to
autonomously perform high-variance assembly tasks. Given
the high level of autonomy, even small batch assemblies can
be efficiently automated.

C. SEMANTIC MANUFACTURING EXECUTION SYSTEM
In general, a Manufacturing Execution System (MES) is
responsible for managing and monitoring the execution of
tasks of related devices on a shop floor. Our definition of a
semantic MES (sMES) extends this functionality by using
semantic information that is available to the system in order
to increase its level of autonomy.

In our generic Plug & Produce system, the sMES is the
main component, which orchestrates and triggers the top-
level skills. In particular, the sMES makes use of the KB
in order to perform the deployment of individual tasks of
a manufacturing process to the skills provided by hardware
and software components. The sMES itself can be embedded
in a superordinate system that takes care of the planning
and scheduling on the factory level. For the invocation of
skills by the sMES, a high-level process description in the
KB is used for parametrization, which includes a set of
specific types of subtasks that impose certain requirements,
which potential target components have to meet. The low-
level skills are dynamically selected based on their suitability,
physical properties, and availability in a particular production
environment.

For our experiments, we implemented a sMES that inter-
acts with a knowledge base that contains semantic models
of all necessary skill types and their parameters, as well
as information on the manufacturing process and the corre-

sponding products. With this approach, a client only needs to
send a manufacturing process’ identifier to the sMES, which
then queries the knowledge base to retrieve a sequence of
skill types and associated parameters that are required for
performing the production task at hand. Due to the standard-
ized skill interface, the sMES can interact with every skill
available in the system.

VIII. IMPLEMENTATION AND EVALUATION
For evaluating our proposed Plug & Produce system ar-
chitecture regarding the automatic discovery and execution
of skills, we assembled a robot workcell composed of a
Universal Robots UR5, a Kelvin tool changer, and two tools:
the parallel gripper Robotiq 2F-85 and the vacuum gripper
Schmalz ECBPi as shown in Fig. 6.

The integration of these components is described in further
detail in this chapter. We rely on the previously defined skill
model and various device-specific adapters responsible for
wrapping the proprietary interfaces to our standard OPC UA
skill model, and our sMES to control the overall process.

A. SKILL IMPLEMENTATION
OPC UA is a protocol definition and therefore not bound to
a specific programming language. For our implementation in
C++, we use the open source OPC UA stack open625412.
The following paragraphs explain how the previously defined
concepts can be applied to specific hardware components
based on a generic class model.

The source code and OPC UA NodeSets that were devel-
oped for the whole system and its components are published
on GitHub3. It is also possible to run the system in simula-
tion, as described in the included README file.

a: From Information Model to Executable

A companion specification usually comes with a NodeSet2
XML file which defines all the nodes and references between
the nodes inside this specific information model. For more
complex information models, the more intuitive and less
verbose OPC UA ModelDesign format is typically used.

Previously mentioned companion specifications for this
paper were written in the ModelDesign format and are
available on our GitHub account. Using the official UA-
ModelCompiler4 the ModelDesign format is converted to
the NodeSet2 format, which can be consumed by all major
OPC UA implementations. open62541 comes with a NodeSet
compiler that transforms the NodeSet2 XML format into
compilable source code initializing the OPC UA server. We
extended the functionality of this NodeSet compiler to sup-
port additional features and contributed this extension into
the upstream repository.

2https://github.com/open62541/open62541
3https://github.com/opcua-skills/plug-and-produce
4https://github.com/OPCFoundation/UA-ModelCompiler
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FIGURE 6. Robot workcell used in evaluation
composed of robot arm, tool changer, and tools.

FIGURE 7. UML class diagram for relevant C++ classes and their members for the generic skill model
implementation. Specific skill types inherit from SkillBase and set the corresponding method callbacks.

b: Generic C++ Class Model
Using the NodeSet compiler of open62541, all defined nodes
and references are created in the OPC UA server. Additional
functionality, in particular the handling of the state machine
and the skill functionality, needs to be implemented on top
of the generated code. Using object-oriented programming
in C++, we are able to reuse as much code as possible for
different device-specific skill implementations. Fig. 7 gives
an overview over the defined classes.

The abstract Program contains method callbacks for the
state transition methods of an OPC UA Program using the
provided server API and handles the event triggers for state
transitions. The SkillBase class extends the Program
class and is the basis for all skill implementations. Due to
this abstraction, a specific skill implementation only needs to
implement the hardware interface and does not need to han-
dle the OPC UA-specific configuration. When a client sets
the parameters and then calls the start method through the
OPC UA interface, the callback function in SkillBase is
triggered and forwarded to the concrete skill implementation.
Skill parameters are statically defined in the specific skill
subclasses and passed transparently to the callback method.
State transitions and event handling are performed in the
Program class based on the return value of the callback.

B. DEVICE ADAPTERS
Fig. 8 shows a simplified overview of the components used in
our final evaluation and are described following a bottom-up
approach in this section.

All components in the system implement the proposed
skill interface from Section VI, so that they can be considered
for task deployment. Only very few devices are available that
directly provide a sophisticated OPC UA control interface.
Such devices typically only provide data access for predictive
maintenance and input/output control. Standardization and
adoption of more complex interfaces will take some time
and an intermediate solution is needed to integrate non-
compatible devices. This can be achieved by implementing
device adapters, that wrap proprietary interfaces to provide
the proposed skill interface. The term Brownfield integration
is generally used to refer to such an integration.

An existing suitable skill type needs to be chosen, or a
new one needs to be created by subtyping an existing one,

FIGURE 8. Architectural setup for hierarchical skill composition. Hardware
components are wrapped by custom OPC UA servers and provide their skills
to higher-level components.

to represent the device’s functionality. The created definition
then needs to be transferred to an OPC UA NodeSet, which
is the basis for the resulting address space model in the
OPC UA server.

Using our generic C++ class model, state machine han-
dling is already implemented. Therefore, only the specific
control of the underlying hardware or communication with
other skills has to be implemented. Our provided code also
includes a generic implementation of a skill client that can
be used within a skill implementation for accessing other
skills. All device adapters also implement LDS-ME to be
discoverable by other components.

a: Wi-Fi Microcontroller Boards with OPC UA
As some components require specific hardware circuits to
adapt the proprietary interfaces, we decided to use a mi-
crocontroller with built-in Wi-Fi support. We first evaluated
the RaspberryPi Zero with Wi-Fi and Raspbian. Due to a
bootup time of more than 20 seconds, we chose to use a
smaller microcontroller for that purpose. A good choice with
enough memory and exceedingly small dimensions is the
TinyPICO board based on the ESP32 platform by Espressif
running FreeRTOS. We developed an OPC UA server, which
can be flashed directly onto this microcontroller. Below, we
will refer to this controller as TinyUA. The example imple-
mentation is available on GitHub5. It takes around 8 seconds
for the microcontroller to power on, join the Wi-Fi network,
get the current time via NTP, start the OPC UA application,

5https://github.com/Pro/open62541-esp32
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and announce itself through the OPC UA discovery services,
which is significantly faster compared to a Rasperry Pi.

b: Kelvin Tool Changer & ADC Adapter
The Kelvin tool changer is a passive tool changer: it does
not use electric or pneumatic control to attach or detach
tools. Its manual locking mechanism can either be operated
by a human or autonomously by suitable robot movements.
Through an analog voltage pin, it provides the current state
of the tool changer and the attached tool ID. Using a TinyUA
server with its built-in analog-digital converter (ADC) as the
base component, the status of the tool changer is provided
to the higher-level software component. It runs on a PC and
provides the AttachToolSkill, ChangeToolSkill and DropTool-
Skill. It is connected via wireless network to the ADC adapter
to fetch the tool changer states. Its startup configuration
requires a specification on which robot the tool changer is
mounted and therefore waits for the announce message of
the robot to be ready before connecting to its move skills.

c: Vacuum Gripper: Schmalz ECBPi
The Schmalz ECBPi vacuum gripper uses the IO-Link pro-
tocol for its control interface. Our TinyUA board is con-
nected via the IO-Link Master Board from TeConcept. With
this setup, the TinyUA board implements the GraspSkill
and ReleaseSkill directly on the microcontroller and maps
commands to the IO-Link device. This microcontroller is
mounted directly on the gripper using a custom 3D-printed
casing (Fig. 9, left). This setup only requires an external
power source of 24 V and can be used to adapt any other IO-
Link hardware to OPC UA directly on the tool side.

d: Parallel Gripper: Robotiq 2F-85
The Robotiq gripper is shipped with a Modbus RS-485
interface. The serial interface of the TinyUA board is used
together with a MAX3485 chip to connect to the RS-485
interface. We use parts of the Robotics Library [48] for
implementing the protocol. The TinyUA board provides the
GraspSkill and ReleaseSkill to other components, and is also
mounted directly on the gripper using a custom 3D-printed
casing (Fig. 9, right).

e: Universal Robots UR5
To implement our OPC UA skill model for the real-time
interface of the Universal Robots UR5, we developed our
own C++ application, which combines path planning and
robot control abstraction of the Robotics Library [48] with
the open62541 OPC UA stack. This application provides all
robot movement skills as depicted in Fig. 4 via the OPC UA
interface to other components.

f: Pick-and-Place Software Component
The Pick-and-Place software component is not directly con-
nected to any hardware, but provides its functionality by
composing and orchestrating lower-level skills as described

FIGURE 9. Custom Wi-Fi OPC UA tool adapter based on the TinyPICO
microcontroller board running FreeRTOS: Schmalz ECBPi (left) and Robotiq
2F-85 (right). The only external connection required is a 24 V power supply
provided through the tool changer.

in Section VI. In our evaluation, we developed a software
component that implements the PickPlaceSkill. The internal
skill-specific implementation receives the ID of the object
that should be picked and queries our world model for the
object’s properties (geometry, current pose). In more com-
plex setups the simple object ID could be replaced with more
detailed object descriptions, e.g., to be used by an internal
object detection. Using the given endpoint for the tool and the
robot in combination with the Skill Detector, the grasp skill
and CartesianLinearMoveSkill is detected. As mentioned
before, the grasp skill provides the grip point offset and grip
type. Combining this information with the object’s proper-
ties, a grasp planner can determine the optimal grasp pose
for the object, which is in our case a 5 cm offset in z direction
for the approach positions. A more advanced implementation
could include a more complex path planning algorithm while
keeping the same interface. When all required information is
available, the skill implementation triggers the corresponding
lower-level skill sequence.

If there is more than one robot in the system, multiple skills
of the same type may be available. In this case, a higher-level
component needs to intelligently select the correct endpoint
based on additional information from the task or world
model, e.g., the robot’s position and reachable robot’s work-
ing area. Another solution could be to use Software-Defined
Networking (SDN) to create different network segments and
thereby shift the intelligence from the lower level to a central
instance [43].

C. EVALUATION
We evaluated our proposed Plug & Play architecture on three
demonstrators. One demonstrator is composed of a KUKA
iiwa robot and is used to insert ATO fuses into automotive
fuse boxes. Here, we developed a composite skill for insert-
ing a fuse, which uses lower-level gripper and robot skills.
In a similar fashion, another demonstrator with a Universal
Robots UR5, a tool changer, and a parallel gripper was
developed for placing terminal blocks onto a DIN hat rail. In
order to further show the applicability of our proposed Plug
& Produce system, we built a third demonstrator setup, as
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depicted in Fig. 8, which demonstrates a pick and place task
involving a tool changer and two tools: a parallel gripper and
a vacuum gripper.

A video of the execution and automatic adaptation of the
Pick-and-Place skill for two different tools can be accessed
online6. The overall process defined in the knowledge base
includes the following steps: change tool to parallel gripper,
pick and place box, change tool to vacuum gripper, pick and
place box, detach tool. Since both tools provide the same
pick and place skill interface, the pick and place compos-
ite skill is able to interact with the tools, independent of
the manufacturer or used actuation technologies. Our main
focus was on the evaluation of automatic skill discovery on
startup and during a tool change, the parametrization, and the
performance of the overall system. Other grippers, or even
the robot hardware (see [34]), can now easily be integrated
into the system or exchanged without the need for changing
the process description or higher-level control applications
like the sMES, given that these components implement the
proposed skill interface.

It is difficult to find similar approaches for a quantitative
comparison. Other approaches are mostly designed with dif-
ferent use-cases in mind and, to the best of our knowledge,
there is no suitable numerical quantification to measure the
flexibility of a system.

For an initial quantitative evaluation, we measured the time
between starting a component or connecting its power supply,
and the successful detection of the component’s skills by
other components. The following values are averaged over
5 test runs in our demonstrator.

• Universal Robots UR5: 313 ms
• Pick-and-Place component: 211 ms
• Kelvin Tool changer component: 253 ms
• Robotiq 2F: 8422 ms (8.4 s)
• Schmalz ECBPi: 9635 ms (9.6 s)
As can be seen, automatic component discovery and skill

detection in general takes less than 300 milliseconds. The
Robotiq 2F and Schmalz ECBPi adapters based on TinyUA
require around 9 seconds. This higher value stems from
summing up various necessary steps: Bootloader (1.8 s),
connecting to Wi-Fi (2.9 s), initializing system time with
NTP (1.9 s), starting the OPC UA application and announcing
itself (1.8 s). The initialization of the IO-Link board requires
an additional 1.2 seconds on the Schmalz ECBPi’s TinyUA.
These longer setup times can be reduced by improving the
prototypical implementation of our TinyUA controller. With
adequate effort, we estimate them to be below 5 seconds.

IX. CONCLUSION
In this paper, we present a generic system architecture for a
Plug & Produce system. Based on our defined requirements,
we chose OPC UA as a basis for this system. Using a
combination of OPC UA’s decentralized discovery mecha-
nism and our skill detector, newly plugged-in components

6https://youtu.be/BviOXtrQOZ8

and their skills are automatically detected by the system.
The presented generic skill interface description is used to
abstract away lower-level functionalities. The combination
of a semantic MES and a knowledge base enables flexible
component exchange without the need of reprogramming
control applications.

The evaluation of our proposed system on multiple robot
workcells shows, that a very well-performing generic Plug
& Produce system can be achieved using OPC UA. An
important aspect to consider is that the cost of flexibility
and configurability is performance. In general, for more
flexible or generic systems, a higher performance impact
can be expected. Executing skills introduces communication
and synchronization overhead, while a dedicated low-level
implementation accomplishing the same task can typically
achieve a higher performance.

Component integration based on a Wi-Fi does not nec-
essarily slow down the system, e.g., robot tools can be
efficiently controlled through stable Wi-Fi. The impact of
unstable network connection, real-time control using Time
Sensitive Networking, and the usage of mobile 5G networks
for real-time robot control still needs to be investigated.

A major drawback, which currently prevents the direct
application of our approach, is the fact, that nearly every
device comes with its own protocol specification. Further-
more, the requirement to base all skill implementations on
a specific skill type assumes that different manufacturers
agree on suitable sets of skill types. This task is eased by
reusing already existing standards: via the OPC UA dictio-
nary reference, it is possible to link external entities, e.g.,
the corresponding eCl@ss or VDI 2860 definition to a skill
type. As an active member of the joint working group of
OPC UA and VDMA for integrated assembly solutions, we
are supporting the standardization process of a generic skill
model in OPC UA. Based on this generic skill specification,
other companion specifications can define their own device-
specific skill types. The corresponding skill implementation
still needs to be developed once by the device manufacturer.
The work leading to this publication intends to contribute to
this process and to bring it closer to its goal. However, it will
take even more time until the majority of components support
a common Plug & Produce standard. Skill implementations
that comply with standardized skill types could be distributed
through software libraries or skill stores.

The effort of implementing device adapters quickly pays
off, as they significantly reduce the required reconfiguration
time especially for small lot production. We will continue
to work toward supporting more types of hardware and
developing models for corresponding types of skills such as
robotic spindle systems and force-enabled assembly skills.
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