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Abstract—Digital transformation efforts in manufacturing
companies bear the potential to reduce product costs and increase
the flexibility of production systems. The semantic integration of
data and information along the value chain enables the automated
interpretation of interrelations between its different aspects
such as product design, production process and manufacturing
resources. These interrelations can be used to automatically gen-
erate semantic process descriptions and execute corresponding
robot motions. An initial one-time effort to model the required
knowledge of a particular application domain can make the
manufacturing of high-variant products in small batches or even
lot size one production more efficient.

This paper introduces a knowledge-based digital engineer-
ing concept to automate engineering and production activities
without human involvement. The concept was integrated and
evaluated in a physical robot workcell where automotive fuse
boxes are autonomously fitted with different fuse configurations.

I. INTRODUCTION

Digital transformation is currently one of the key challenges
in the manufacturing industry, when it comes to streamlining
and automating internal processes. The core goals include
establishing data access to technical systems, sharing data, and
increasing the effectiveness and efficiency of data processing.
Most companies already use digital data such as PDF files,
spreadsheets, and other documents that often share different
types of identifiers. But despite being digital data representa-
tions, they do not provide the semantic meaning of the data or
an integrated view on multiple data sources. Thus, the potential
of a proper digital transformation strategy is not realized.

Manufacturing companies in particular face many chal-
lenges. They have to optimize product costs and maximize the
flexibility of their production systems to stay competitive while
addressing individual customer requests. This leads to high-
variant products and small-batch production. However, the
manual reconfiguration and operation of production systems
are major cost drivers. Automating these activities is therefore
essential when competing in a global market [1].

The production phase is a key aspect for assessing the
product costs and performance criteria of a manufacturing
value chain, but it is only one of several interrelated phases.
Product design and development take place before the start
of production. Production processes have to be specified
and checked for compliance with requirements derived from
product features. Production systems are engineered to meet
the requirements of both the production process and the
product. Process data generated during individual production
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Fig. 1: The knowledge-based Data Backbone in the center
represents and links data from different engineering activities
along the value chain of manufacturing companies.

runs have to be interpreted with respect to these requirements
and suitable performance criteria have to be derived and
evaluated. Manufacturing companies typically have dedicated
departments for these activities, but no semantic representation
of data and information that is shared among them and
the production system. Product lifecycle management (PLM)
tools provide meta-level descriptions of various data and file
formats, but lack a deep semantic understanding of how they
are interconnected and the implications thereof.

We propose a knowledge-based digital engineering concept
for manufacturing companies that involves semantically de-
scribing and integrating all relevant knowledge of a product,
its production process, and related manufacturing resources.
Ontologies are used to model and combine commonsense,
domain, and application knowledge to provide a deeper un-
derstanding of the task at hand. Based on this context-rich
semantic description, production-related engineering activities
can be automated.

In this paper, we present our knowledge-based Data Back-
bone concept (Fig. 1) that semantically integrates the in-
troduced activities along the value chain. Furthermore, we
introduce a realistic use case that has been automated in a
physical robot workcell (Fig. 9). There, we show how even lot
size one production can be automated, starting from an order
and ending with the execution of generated robot motions, by
accessing and interpreting relevant semantic information.



II. RELATED WORK

The work in this paper is based on two core principles, i.e.,
the explicit representation of knowledge using ontologies and
the integration of manufacturing resources using skill models.

Skills can be seen as a tool-centric approach to process
modeling and execution that simplifies the abstraction of func-
tionalities provided by hardware and software components [2],
[3]. OPC UA (Open Platform Communications Unified Archi-
tecture) is a protocol for device integration and information
exchange in modular production systems developed by the
OPC Foundation. In [4], a standardized OPC UA skill model is
proposed to integrate and control industrial robots and tools in
a hardware- and manufacturer-independent manner. This skill
model provides, e.g., generic move skill types, which can be
hierarchically composed to higher-level functionalities. Using
automatic device discovery, as described in [5], these device
components can be dynamically integrated on the shop floor.

In recent years, there has been active research in
knowledge representation for industrial automation and
robotics. Many approaches follow the product-process-
resources paradigm (PPR) [6], in which products [7] and
product designs [8], production processes [9], and manufac-
turing resources [10] are modeled. The combination of skills
and explicit knowledge representation is often used to reduce
the complexity of programming production systems [9], [11],
[12]. In [13], a CAD-based instruction of assembly tasks is
described. The authors suggest a system architecture, where
geometric constraints are specified on an application layer to
describe assembly steps. They are mapped to the skills of
a workcell and then executed and monitored using restricted
finite state machines.

Rosen et al. emphasize the increasing importance of au-
tonomous manufacturing and meaningful digital representa-
tions of products and manufacturing resources [14]. A pre-
requisite for increasing the autonomy in manufacturing is
access to relevant data and information and a formal repre-
sentation that encodes their semantic meaning. This includes
semantic access to data [15], [16] and the extension of PLM
systems [17]. In [18], the authors present a combination of
semantic process knowledge and OPC UA-enabled devices to
create a self-organizing production system. Given the semantic
context information from PPR models and general automation
knowledge, autonomous production can be extended with the
automated annotation of process data and derivation of key
performance indicators (KPIs) [19], [20], [21].

In contrast to the mentioned papers and our own pre-
vious work, the approach presented in this paper aims at
replacing the manual instruction of production systems with
a knowledge-driven synthesis of process descriptions. We
propose a product-centric process modeling paradigm that
differs from tool-centric approaches, which are based solely
on the sequencing of specific skill invocations. Product-centric
process models contain hardware-independent descriptions of
the required manufacturing steps leading to the creation of
a given product. During the deployment of such a device-
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Fig. 2: Semantic representations of various types of knowl-
edge are integrated in a shared knowledge base to provide
semantic context knowledge for our semantic MES in order
to autonomously perform and evaluate manufacturing tasks.

agnostic process description, suitable hardware and software
components are identified based on a formal description of
their capabilities [22]. As a result, the same process model
can be reused in different production environments.

III. EXPLICIT KNOWLEDGE REPRESENTATION

Industrial automation solutions are characterized by a large
engineering effort and tailored to particular hardware and
software components for specific use cases. Furthermore, a
lot of commonsense and domain knowledge is often encoded
in the software implementations that drive the systems. Con-
sequently, the knowledge is only implicitly represented and
hidden in source code. Sharing the knowledge is complicated
by the use of various programming languages and the in-
terweaving of task logic and control code. In our concept,
knowledge is separated from software implementations and
described in ontologies using a formal knowledge representa-
tion language to make it reusable and shareable. The explicitly
represented knowledge can be more easily maintained and
flexibly extended. As a result, software implementations can
be designed as generic components that are configured for
specific hardware and use cases via semantic models.

Our knowledge-based digital engineering concept uses the
OWL 2 Web Ontology Language [23] as its formal knowledge
representation language. OWL was developed by the World
Wide Web Consortium (W3C) for the Semantic Web. Due to
its wide applicability and many available software tools, it
can be used in other areas such as the domains of industrial
automation and robotics as well. OWL provides methods to
formally describe entities as classes, instances of these classes
called individuals, and properties that define the relations
between them or connect them with literal values such as
numbers or strings. New complex classes and relations can
be created by combining existing entities. Globally unique
names are assigned to new complex entities to hierarchically
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Fig. 3: Simplified excerpt from a deep semantic model of a
blade fuse’s geometry based on the OntoBREP ontology.

extend the existing vocabulary of an ontology. Due to OWL’s
logical formalism, explicitly modeled knowledge can not only
be queried, but also interpreted by semantic reasoning software
to logically infer additional implicit knowledge.

IV. KNOWLEDGE-DRIVEN DIGITAL ENGINEERING

Our knowledge-driven engineering approach aims at se-
mantically describing all relevant data and information that is
required to automatically generate suitable sequences of robot,
tool, and sensor activities for achieving a given production
goal. One key aspect is the use of a common representation
for describing diverse data from heterogeneous sources and
different types of knowledge (Fig. 2). These descriptions do
not merely provide meta-information, but instead fully encode
the actual content and its meaning. This includes knowledge of
the product to be built, the production process that creates the
product, the manufacturing resources that perform the process,
and general knowledge of the automation and application do-
mains. The semantic integration of certain kinds of information
can be automated, while for others it still has to be carried out
manually. As the manual effort only needs to be expended once
and the resulting models can be shared and reused, the initial
effort can lead to efficiency gains in the long run.

We use OWL to model all relevant entities in ontologies.
In OWL every entity has an Internationalized Resource Iden-
tifier (IRI), which can be used to unambiguously reference
the entity and to link it with other entities. This concept of
linked data in combination with deep semantic models makes
it possible to describe relationships across different knowledge
domains and levels of granularity.

A. Semantic Data Integration

Regular CAD models, i.e., STEP or IGES files, of prod-
ucts, parts, manufacturing resources, and workcells can be
automatically converted into our ontology-based boundary
representation (OntoBREP) using a self-developed software
component [7]. In this geometry representation, every vertex,
edge, face, and solid is represented in OWL as an individual.
They can be annotated with additional information and linked
with, e.g., the description of a related production process.

Fig. 3 visualizes an excerpt of a geometry representation
based on the OntoBREP ontology. The top face (Face-1) of
the depicted automotive blade fuse’s geometry is defined by an

infinite plane (Plane-1). The individual Wire-1 is a topological
BREP entity that contains a total of four edges that make
Face-1 a finite rectangular-shaped surface. The highlighted
edge (Edge-1) is defined by a line (Line-1) bounded by two
vertices (Vertex-1 and Vertex-2). In addition to this boundary
representation, which contains exact mathematical models of
geometries, the individual Triangulation-1 provides a triangu-
lation of Face-1, which can be used for visualization purposes.

Another example for automated semantic integration is
the transformation of industry-standard information models
of manufacturing resources to OWL representations. In our
concept, OPC UA is used as the communication technology
between hardware and software components in the overall pro-
duction system. In OPC UA, components describe their func-
tionalities and internal states with so-called node sets, which
can be remotely browsed by other components. OPC UA
node sets are defined based on XML schemas and can be
automatically transformed to OWL representations [10].

Since most companies do not have formal descriptions of
their production processes, creating semantic process descrip-
tions is still mostly a manual activity. Typically, plain texts
and spreadsheets need to be analyzed and converted into a
sequence of production steps with adequate parameters. For
each type of production step and parameter, OWL classes and
properties are created or reused. The resulting vocabulary is
applied in the modeling of a workcell-independent description
of a production process. This abstract process can be instan-
tiated for specific workcells and individual production runs in
an automated manner.

The semantic process description can be seen as a hardware-
agnostic formalization of the required production steps to
create a given product. It contains a high-level sequence of
abstract tasks, including their types and parameters, that are
described with respect to abstract objects, including their types
and properties. During the deployment of an abstract process
to a manufacturing workcell, individual tasks are matched to
compatible skills that are provided by the workcell’s hardware
and software components. Objects and other parameters are
similarly mapped to suitable objects and other entities in
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Fig. 4: Task parameters are represented semantically as objects
and frames that are linked with other entities in ontologies.
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the workcell. As a result, the same abstract process can be
reused and may result in different skill invocations and specific
parameters for different workcells (Fig. 4).

B. Knowledge Base

The Knowledge Base (KB) component is responsible for
the central storage and interpretation of and access to the
semantic knowledge in the system. For this purpose, it uses
the triple store and OWL 2 RL [24] inference capabilities of
Ontotext GraphDB1. The KB uses the open-source OPC UA
stack Eclipse Milo2, so that other hardware and software
components in a workcell can directly communicate with it
via OPC UA. For each use case, such as a robot workcell
for mounting fuses, both general OWL ontologies as well as
specialized ones, e.g., about application domain, production
process and workcell, are loaded into the KB.

In order to make the system more flexible and to separate
knowledge from source code, the ontologies may contain
SPARQL 1.1 (SPARQL Protocol and RDF Query Language)
requests, i.e., SELECT and CONSTRUCT queries or DELETE
and INSERT updates. These requests are executed dynamically
to query and manipulate knowledge in the KB during the
procedures described in Sections V-B, V-C and V-D.

Each modeled SPARQL request is defined by its IRI, type,
parameters, and request string. This representation is based on
the textual SPARQL forms in SPIN (SPARQL Inferencing No-
tation) [25] and SHACL (Shapes Constraint Language) [26].
The KB mainly provides three OPC UA methods for executing
SPARQL requests and returning their results as JSON [27]
for SELECT queries and as N-Triples [28] for CONSTRUCT
queries.

• sparql-request(repoId, requestString) executes the given
SPARQL request string in the given repository.

• sparql-command(repoId, requestIri, parameters) executes
the SPARQL request identified by the given IRI with the
given parameters.

• linked-sparql-command(repoId, resourceIri, propertyIri,
parameters) executes all SPARQL requests that are linked
with the given resource via the given property.

An OWL class (using owl:hasValue restrictions) or indi-
vidual can be linked with multiple requests via the same
property. Thus, when a request is defined for each type in
a class hierarchy, a set of requests can be inferred for an
individual based on its type. On account of this, linked-sparql-
command executes all linked requests, e.g., multiple updates,
in an arbitrary but consistent order. For multiple CONSTRUCT
queries the union of their results is returned.

C. Semantic Manufacturing Execution System

The semantic Manufacturing Execution System (sMES)
controls the other hardware and software components in a
particular workcell and is managed by a superordinate shop
floor MES. The shop floor MES is not described in further

1https://www.ontotext.com/products/graphdb/
2https://github.com/eclipse/milo
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Fig. 5: Steps leading up to the creation of a process description
for equipping an automotive fuse box – from a released order
to the corresponding fuse configuration and slot assignment.

detail, since it may be any proprietary implementation or
industrial solution. Its role is to gather information on the next
production run and trigger the sMES with the corresponding
product ID.

The sMES component is responsible for carrying out a
production process. This includes mapping abstract processes
to specific workcells (Section V-B) and executing the resulting
specific processes (Section V-C). During this deployment, the
semantic process description in the KB is queried via OPC UA
methods (Section IV-B) in order to set the skills’ parameters
prior to their invocation.

All device components in the system implement a generic
skill model [4] based on OPC UA’s ProgramStateMachineType
with predefined states and transitions. The execution of a
skill is monitored based on the associated state machine. In
addition to the generic skill interface, all device components
have to implement OPC UA Local Discovery Services [5].
As soon as a newly plugged-in device is detected, the sMES
triggers its internal skill detector to browse the remote server
for provided skill types. Thus, at all times an up-to-date list
of available skills is maintained, which can be used in the
mapping procedure.

As described in [4], lower-level skills can be grouped
hierarchically to compose new and more complex skill types.
For example, a Pick-and-Place skill type is composed of robot
movement and gripper manipulation skills. This hierarchical
composition leads to further abstraction of hardware function-
alities and enables the intuitive modeling of complex skills.

V. FROM ORDER TO AUTONOMOUS ASSEMBLY

This section shows how the introduced concepts can be
applied to the knowledge-driven automation of equipping
automotive fuse boxes with different fuse configurations.

A. Semantic Process Description

The steps leading up to the required information for mod-
eling the semantic process descriptions are depicted in Fig. 5.
Based on an order consisting of a list of requested modules, a
module combination-specific wiring configuration is derived.
Afterwards, suitable fuse types are selected for the modules.
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Fig. 6: Simplified overview of the OWL ontologies in the KB for a particular fuse mounting process and workcell. It shows
mapped process SpecificProcess-1 and its subtasks MoveHomeTask-1, ReleaseGripperTask-1, PickAndPlaceTask-A-1, etc. It
further visualizes a sequence of robot and gripper subtasks generated for PickAndPlaceTask-A-1 based on a modeled template.

In a last step, a mapping of fuses to slots in the fuse box is
generated.

The semantic process description from Section IV-A con-
tains not only knowledge about the process itself, but also
links with other semantic descriptions that are relevant to
the process’s execution. This includes, e.g., the parts of a
product, reusable production steps, or, once the process is
deployed to a workcell, a robot and tool. The KB stores them
in various contexts corresponding to their respective OWL
ontologies. Part ontologies may contain, e.g., the ID, type,
size, current rating, and color of fuses. Workcell ontologies
may include hardware and software components as well as
information about them such as a robot’s workcell-specific
home configuration. A separate perception context, which
may be updated by object detection or inventory management
systems, contains parts that dynamically enter and leave a
workcell, e.g., fuses and fuse boxes.

B. Mapping of Abstract Process to Specific Workcell

Since abstract processes are workcell-independent, they
have to be mapped to a specific workcell first, in order to
generate an executable specific process (Fig. 6). This mapping
procedure is modeled using SPARQL updates that are called
via OPC UA (Section IV-B) by the sMES at the beginning of
the execution. First, initialization updates set up the specific
process based on the given workcell, which mainly consists of
creating a new context, setting metadata, and taking a snapshot
of the workcell’s perception context.

Secondly, beginning with the process itself, abstract tasks
and parameters are mapped recursively to generate specific
tasks and parameters using mapping updates (Listing 1) that
are defined along the class hierarchy of the tasks. If a task
can be matched directly to a skill of a device component in
the workcell, the mapping procedure continues with the next
task. Otherwise, if the task starts with a subtask or if the task
has a TemplateTask for generating one, the subtask is mapped
recursively first. TemplateTasks contain lower-level subtasks

PREFIX core: <http://www.fortiss.org/ont/robotics/core#>
SELECT ?specificPickObj ?abstractPickObj
WHERE {
$specificProcess core:context ?context .
$abstractTask core:hasPickObject ?abstractPickObj .
{ ?specificPickObj core:wasMappedFrom ?abstractPickObj .

BIND(1 AS ?priority) }
UNION
{ ?specificPickObj a core:Object , core:Specific .

FILTER NOT EXISTS {
?abstractPickObj a ?pickObjType .
FILTER (core:Abstract != ?pickObjType)
FILTER NOT EXISTS {?specificPickObj a ?pickObjType} }
BIND(2 AS ?priority) }

FILTER EXISTS {GRAPH ?context {?specificPickObj a []}} }
ORDER BY ?priority ?specificPickObj
LIMIT 1

Listing 1: Simplified subquery from a SPARQL mapping
update for PickAndPlaceTasks. It maps a pick object from an
abstract process to an object in a specific workcell based on its
types. Each pick object is an abstract parameter that is mapped
only once and shared among tasks in the same process.

to achieve the intended overall effect given shared parameters
such as pick object, place object, and target frame (Fig. 4).

C. Execution of Specific Process

When the sMES (Section IV-C) is called to execute a pro-
cess, it first performs the process-to-workcell mapping (Sec-
tion V-B). At that time, it also creates the process’s tasks and
their KPIs in its OPC UA address space (Section V-D).

The actual execution follows directly afterwards and begins
recursively with the specific process itself. If a task was
matched to an available skill, the sMES calls the KB to execute
its parameter queries. Their results contain the parameter
values for the invocation of the skill. Due to the generic
skill interface, they can be parsed, processed, and mapped to
corresponding OPC UA variables that are intended to hold the
skill’s parameters. The skill execution is then started via the
state transition methods of its state machine. If a task was
not matched to any skill, but it starts with a subtask, then the
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Fig. 7: Product parts, manufacturing resources and their layout
in a workcell are represented semantically in ontologies.

subtask is executed recursively instead, e.g., as shown by Fig. 6
for the specific process itself and PickAndPlaceTask-A-1.

The sMES monitors the execution and calls the effect
updates of successful tasks in the KB. The effect update of,
e.g., a PickAndPlaceTask includes removing the pick object
from its old (relative) location in the KB’s semantic scene
graph and inserting it at its new (relative) location (Fig. 7).
For both successful and unsuccessful tasks the sMES calls
their status updates to insert the monitoring results into the
KB. After the end of a task, the sMES asks the KB which task
should be executed next. If the task was successful, the next
task according to the semantic process description is executed.
Otherwise, the semantic process description may include error
handling strategies. For instance, in a PickAndPlaceTask-A the
execution can jump back to an earlier subtask in case of an
error (Fig. 6) and the subtasks are rerun for a specified number
of attempts.

D. Semantic Process Status

The semantic process status is part of the semantic process
description in the KB and updated during the execution by
the SPARQL status updates in Section V-C. A general status
update for all task types sets the new status, e.g., OK/NOK,
and internally calculates additional KPI-related information
such as start time, end time, number of executions, number
of errors, and the process’s currently executed task. Some
skill types have additional status updates for skill-specific
information, e.g., the maximum measured forces during the
execution of a CartesianLinearForceMoveSkill.

After calling a task’s status updates, the sMES calls its
status queries, since the status and KPIs may change due
to calculations and completed subtasks. The status queries
defined along the class hierarchy of the tasks include general
status queries, e.g., for calculating and returning a task’s
duration, and specialized status queries, e.g., for returning the
maximum measured forces. The KPIs and status queries of
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Fig. 8: Hardware and software components in the robot
workcell provide OPC UA skills and services.

some task types are affected by their subtasks. The status of the
PickAndPlaceTask for mounting a fuse includes the maximum
measured forces during the place motion and the number of
pick and place attempts that were necessary. Similarly, the
status of the process itself automatically shows the maximum
measured forces among any of its PickAndPlaceTasks.

The sMES parses, processes, and maps the status query
results to OPC UA variables in its address space. These
variables correspond to the KPIs of the tasks and enable
OPC UA clients to browse the current semantic process status.

VI. EVALUATION

The components and semantic descriptions of the system
are largely independent of any specific use case or workcell
to the extent that, e.g., the source code of the sMES does
not know what a PickAndPlaceTask is and the source code
of the KB does not even know what a task is. Therefore,
software components such as the KB and consequently the
sMES are configured with general and domain ontologies
as well as abstract process and specific workcell ontologies.
Device components provide skills for robots, tools, or other
hardware by wrapping them in OPC UA servers [4].

In this way, a physical robot workcell (Fig. 9) was set
up for the evaluation of the system using the architecture

Source: Dräxlmaier

Fig. 9: Manual assembly station (left) and robot work-
cell (right) consisting of a robot, a parallel gripper, a barcode
scanner, a tray with automotive fuses, and a fuse box fixture.
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Fig. 10: Active slots in the fuse box shown in a HMI during
production (left). OPC UA variables in the address space of
the sMES provide the status based on the semantic process
description in the KB. Fuse box fitted by process P2 (right).

Fig. 11: Robot mounts each fuse by picking it from a tray (left)
and placing it in the assigned slot of a fuse box (right).

and components shown in Fig. 8. The workcell contains
a robot (KUKA LBR iiwa 7 R800), on which an electric
parallel gripper (Sommer Automatic GEP1402) was mounted.
The gripper fingers were designed after the shape of manual
pliers for automotive blade fuses and created using additive
manufacturing. A tray for supplying different types of blade
fuses and a fixture for fuse boxes were installed. A bar code
scanner of an automotive supplier reads the product ID on each
empty fuse box that is placed in the fixture. An automotive
supplier’s human-machine interface (HMI) shows the fuse
box’s current status (Fig. 10). The shop floor MES of an
automotive supplier is responsible for managing the production
of different items and sends the product ID via OPC UA to the
sMES. This triggers the fitting of a fuse box via the execution
of a corresponding abstract process from the KB.

In the evaluation, the sMES was ordered to execute five
different processes that contain fuse configurations provided
by an automotive supplier. Table I lists for each process the
number of fuses, the manual duration by a human worker, and
the automated duration by the system from one execution. The
human worker is only somewhat faster, although at this stage
the goal was not to optimize the speed of the system, but to

TABLE I: Comparison of cycle times between the manual
and automated mounting of blade fuses as measured by an
automotive supplier.

Process P1 P2 P3 P4 P5

Number of fuses 9 11 8 18 11
Manual assembly (in s) 121 128 118 151 128
Autonomous assembly (in s) 131 139 151 231 150
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Fig. 12: An automotive supplier’s shop floor analytics dash-
board showing the maximum measured fuse mounting forces
in Z in the end effector frame for each PickAndPlaceTask
in one execution of process P1 (top) and across different
assemblies for slot 9 (bottom). For the mounting of mini
fuses (11–13, 18) higher maximum Z forces were measured
than for regular ATO fuses (3–5, 9, 14).

investigate the feasibility of our knowledge-driven automation
approach. A video of the experiment can be found online3.

For the mounting of fuses (Fig. 11), the system relies on
the force-torque sensors of the robot. Forces occurring during
the execution of tasks are measured and logged together with
other KPIs in the semantic process description in the KB. They
can then be analyzed, visualized as depicted in Fig. 12, and
interpreted with respect to maximum allowed forces. If the
maximum forces are exceeded during the execution of a task,
this information is stored in the semantic process description
and an error handling strategy is performed (Section V-C).
This is in addition to the robot’s configured maximum forces
that trigger an emergency stop. As an extension to the current
system, the robot could provide an additional move skill for
mounting fuses with a target force in addition to a target pose.
This way, the robot would stop when a target force is exceeded
making the fuse mounting process more robust and accurate.

VII. CONCLUSION

This paper describes a knowledge-based digital engineering
concept for the semantic integration of diverse data and in-
formation along the value chain of manufacturing companies.
The resulting OWL ontologies are used to increase the level of

3https://youtu.be/PtPd3YvTTzw
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autonomy in skill-based manufacturing of high-variant prod-
ucts in small batches. We further introduced the core aspects of
our production system, which consists of a knowledge base for
the storage and interpretation of the ontologies and a semantic
MES that manages the knowledge-based manufacturing using
OPC UA device components and their provided skills. The
proposed concept was evaluated in a physical robot work-
cell for the automated fitting of fuse boxes with different
fuse configurations. Although required knowledge had to be
modeled initially, the specific sequences of production steps
for the robot were generated without human involvement.
Based on the semantic process descriptions, suitable KPIs were
automatically prepared during the production process. In its
entirety, a knowledge-based Data Backbone was introduced
that provides the grounds for increasing the level of autonomy
of manufacturing systems.

ACKNOWLEDGMENTS

We would like to thank Franz Gleixner, Manfred Seitz, and
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