
A Hardware-Agnostic OPC UA Skill Model
for Robot Manipulators and Tools

Stefan Profanter, Ari Breitkreuz, Markus Rickert, Alois Knoll

Abstract—The current trend to lot-size-one production re-
quires reduced integration effort and easy reuse of available
devices inside the production line. These devices have to offer
a uniform interface to fulfill these requirements.

This paper presents a hardware-agnostic skill model using the
semantic modeling capabilities of OPC UA. The model provides
a standardized interface to hardware or software functionality
while offering an intuitive way of grouping multiple skills to a
higher hierarchical abstraction.

Our skill model is based on OPC UA Programs and modeled
as an open source NodeSet. We hereby focus on the reusability
of the skills for many different domains. The model is evaluated
by controlling three different industrial robots and their tools
through the same skill interface. The evaluation shows that our
generic OPC UA skill model can be used as a standardized
control interface for device and software components in industrial
manufacturing. With our solution new components can easily
be exchanged without changing the interface. This is not only
true for industrial robots, but for any device which provides a
controllable functionality.

I. INTRODUCTION

The current trend in the manufacturing industry is showing
a strong momentum to flexible component integration, away
from fixed shop floor setups. Especially the Industry 4.0
movement in Europe is one of the main driving forces in this
direction. New devices and components of a production line
need to be integrated in a fast and easy way, independent of the
manufacturer of the component [1]. These components need to
support the same communication interface for manufacturer-
independent information exchange and control.

The Reference Architecture Model Industry
4.0 (RAMI 4.0) [2] defines Open Platform Communications
Unified Architecture (OPC UA) as the core communication
protocol for flexible production lines. We have shown that the
open62541 open source implementation of OPC UA is one
of the best performing open-source protocol implementation
compared to MQTT, ROS, and DDS [3]. Therefore OPC UA
is an ideal candidate for robot control applications.

OPC UA provides a hardware-independent communication
protocol and semantic information modeling. This information
modeling can be used to describe device properties and
functionalities. Every device manufacturer can define his own
extension of the information model, also called companion
specification, which makes it complicated to replace a device
with one from a different manufacturer. In current production

S. Profanter, A. Breitkreuz, M. Rickert are with fortiss, An-Institut Tech-
nische Universität München, Munich, Germany.

A. Knoll is with Technische Universität München, Munich, Germany.
Correspondance should be directed to profanter@fortiss.org

Robot with built-in 
Gripper

MoveSkill

GripperSkill

PickPlaceSkill

Robot

MoveSkill

Gripper

GripperSkill

Software 
Component

PickPlaceSkill

Robot

PositionStreamSkill
Software 

Component

LinearMoveSkill

PtpMoveSkill

Fig. 1. Hierarchical composition of skills. Different robot types can of-
fer different skills. A robot with built-in gripper can directly provide a
PickPlaceSkill. If there is a separate robot and gripper component, their
functionality can be reused by a software component which provides the same
PickPlaceSkill. A very basic robot may only offer a PositionStreamSkill, which
is used by a generic software component to offer higher level skills. These
skills can then be reused, e.g., by the PickPlace Software Component.

systems every robot manufacturer has his own programming
interface and sometimes even uses different bus protocols
which makes hardware replacements across manufacturers
almost impossible. With OPC UA the problem of different
bus protocols can be solved, but every robot manufacturer may
still implement a different OPC UA interface for the device’s
functionality. The same functionality, e.g., moving a robot
to a specific position, may be achieved through completely
different OPC UA services.

To be able to replace a robot or any other device of the
system while keeping the same interface and functionality, a
generic hardware-agnostic skill model is required. This skill
model should be modeled in the OPC UA information model
for easy adaptation. A device itself may provide different
functionalities, also called atomic skills, to other components
of the system. The skill concept is described in more detail
in our previous publication [4]. Such an atomic skill should
provide a well defined and generic interface which allows easy
integration and adaption.

By combining multiple atomic skills, a more complex
system can be built which results in a hierarchical skill
model as shown in Fig. 1. A simple robot can provide a
PositionStreamSkill, which is used by a generic software



component to provide more complex linear and point-to-point
movement skills. These skills can then be used by a client or
another software component providing even more abstracted
skills like pick and place. Hierarchical composition of skills
is in further detail explained in Section III.

In this paper, we present a generic skill model using
OPC UA. This model provides the same interface and model-
ing principles independent of the complexity of the underlying
functionality. The next section gives an overview over already
existing skill models and similar related work. Section III
describes our generic skill model which is implemented on
the example of industrial robots, as shown in Section IV. Our
implementation and model is also released as open source
on GitHub. The skill model is then evaluated in Section V
by applying it to industrial robots of different manufacturers:
KUKA iiwa, Universal Robots UR5, and Comau e.DO, and
controlling a gripper on the robot’s flange.

II. RELATED WORK

In light of OPC UA gaining popularity, a lot of research
has been put into the modeling of different services of man-
ufacturing systems in OPC UA. Since robots make up a core
component of such systems, it is important to explore how
OPC UA can be used for robots effectively. The focus hereby
lies especially in making robots easily exchangeable in the
Industry 4.0 environment.

The recently released OPC UA Companion Specification
for Robotics Part 1 [5] was a first step in the direction
of standardized OPC UA information models for industrial
robots. Part 1 focuses on the vertical integration and mainly
provides data for predictive maintenance, but does not define
robot control interfaces. This is planned for future parts.

Previous publications by [6], [7] and [8] introduce skills
and how these can be used in manufacturing systems in a
broad sense. All these publications use AutomationML to
generate their skills for an OPC UA server, which simplifies
the modeling of skills but introduces a further dependency on
AutomationML making it difficult to use as a basis for stan-
dardization. This additional dependency may also introduce
a considerable hurdle to adapting this concept in small- and
medium-sized enterprises.

Hardware-independent robot control in the Robot Operating
System (ROS) is implemented via ros control [9]. Same
as [10] it only focuses on controlling robots, but does not pro-
vide a generic interface for other hardware components, such
as grippers. The EU funded RobMoSys project1 also mainly
focuses on the composition of robotics application based on
a skill definition integrated in a bigger software architecture.
The adaption of completely new software environments for
hardware manufacturers is not an easy task. Therefore we
focus on using the tools, like OPC UA, which are already
known or accepted by manufacturers and build our model on
top of it.

1https://robmosys.eu/

A technology-independent function interface based on the
PLCopen2 model is described in [11]. The authors define an
OPC UA model based on OPC UA Programs heavily based
on PLCopen function blocks. Using these PLCopen based
OPC UA programs the authors show that controlling a KUKA
iiwa robot is possible through OPC UA. Even switching the
gripper during runtime requires very little reconfiguration from
the user. It is mentioned in their conclusion the next step is to
implement interfaces in which entire robots can be swapped
out and continue to fulfill a task, provided they match a specific
interface. This is where our skill model has its strength: We
show that even robots from different manufacturers can be
completely replaced without changing the client application.

Similar to the approach of [11], our colleagues present
in [12] skill-based engineering using OPC UA Programs [13]
in combination with IEC 61499. OPC UA Programs provide
a mechanism for the semantic description, invocation, and
result feedback of stateful long-running functionalities. These
concepts are improved in this paper by extending OPC UA
Programs. In [14] it is shown that skill-based architectures
provide many advantages in comparison to traditional hierar-
chical approaches, especially for flexible component exchange.

We introduce a generic skill model which can be applied
to any type of device and even to software components
while including most recent developments in OPC UA event
notification. Our focus is on reusing as many concepts as
possible from existing specifications, e.g., by integrating the
newly released OPC UA Specification for Robotics [5].

III. GENERIC SKILL MODEL

One major requirement for having generic hardware-
independent robot, tool, and device skills is to use an adaptable
underlying skill model. In our view, a skill is a specific
piece of functionality which is provided by a hardware or
software component. Such a skill has to fulfill some specific
requirements described in this chapter. It has to have a well-
defined interface and it must be possible to exchange the
underlying hardware-specific implementation while keeping
the same interface.

A basic skill model, independent of its functionality has to
meet the following requirements:

• A skill is classified by a corresponding type definition
• It has a set of base properties which identify and

describe the skill
• It has an optional set of input parameters which con-

figure the skill execution
• It has an optional set of output parameters which

represent the result of the skill execution
• It can be in various states depending on the underlying

hardware or the execution result. There is a minimum set
of states which every skill has to support

• There are methods which trigger state transitions be-
tween these predefined states

2http://www.plcopen.org/

2



• The skill implementation may trigger a state change
internally, e.g., if an error occurred

Based on these identified requirements we define a generic
skill model inside the OPC UA address space. Using OPC UA
allows having a well-known and easily integratable interface to
the skill. This eases our skill model’s integration into already
existing OPC UA environments. We also focus on reusing
already existing well-defined concepts instead of reinventing
the wheel. Our model is released on GitHub as open source 3.

As a basis of our skill model, we are using the OPC UA
Specification Part 10 “Programs“. OPC UA methods are meant
for short-running tasks with a limit of 10 seconds while
OPC UA Programs can model more complex long-running
tasks [13]. In addition methods are stateless and do not
provide any feedback while they are active. A program in
OPC UA represents a state machine which provides basic
methods to trigger state changes, and contains input and output
variables for the client. It also defines a basic set of states
which every program must support: halted, ready, running,
and suspended. For every state change the OPC UA server
emits an event which may contain additional information on
the state change itself. Using this approach, it is possible to
model long running processes using the OPC UA information
model, while adhering to the modeling principles of OPC UA.

An OPC UA Program already fulfills most of the aforemen-
tioned requirements. We introduce the SkillType as a subtype
of the OPC UA ProgramStateMachineType and extend it with
a set of base properties. The SkillType model including its
inherited properties is shown in Fig. 2. This SkillType is the
base type of all the skills offered by any system component. It
extends the definition of OPC UA Programs with a mandatory
Name property. Since this type is the base type for all
skills, a client can easily browse the whole namespace of
an OPC UA server and find all skill instances. The SkillType
inherits the program state machine which provides methods
for triggering state changes in the state machine. For every
state change, independent if it was triggered by a client or by
an internal state change, an OPC UA event is emitted by the
server. A client can create monitored items to receive event
notifications. An OPC UA Program shall implement a base
set of states (Ready, Running, Suspended, Halted), but can add
its own sub-states if necessary. This makes this state machine
very flexible.

Additionally, we define the ISkillControllerType interface.
Every component which implements skills has to implement
this interface and list the supported skills at least inside the
Skills object. An OPC UA interface adds additional mandatory
and optional modeling rules to the implementing object node.
This ensures that all the skills are listed inside a common
well-known Skills object node. This allows any client to im-
mediately get a list of all the available skills without browsing
the whole information model.

The state change methods to control any instance of the
SkillType always remain the same for all the specific skill

3https://github.com/pro/opcua-device-skills

fortiss Devices

OPC UA
ProgramStateMachineType

SkillType

Name GripperSkillType

GraspGripperSkillType

ReleaseGripperSkillType

Halt

Reset

Resume

Suspend

Start

Halted

Ready

Running

Suspended

… Program Member ...

ISkillControllerType

Name

Skills

Skill_1_Placeholder

Skill_2_Placeholder

fortiss Robotics
MoveSkillType

Fig. 2. OPC UA model of the SkillType in OPC UA modeling notation and its
subtypes (blue). SkillType is a subtype of a ProgramStateMachineType. It adds
additional parameters (green) to the inherited children. ISkillControllerType is
an Interface (yellow) grouping all the supported skills of a component inside
the Skills object. Further details on the OPC UA notation can be found in [5].

implementations. This provides a generic interface for all
clients. A skill can be parameterized using the ParameterSet
object as shown in Fig. 3. The ParameterSet contains variables
which need to be set by the client. For example the target
joint values for moving a robot are set for the corresponding
variable inside the parameter set. The client then calls the
Start method which starts the execution of the skill which
internally reads the parameters and performs the movement.
Every skill type has predefined states and transitions. Starting
the execution of the skill is only allowed if the skill is in the
corresponding ready state.

Using this concept it is possible to easily model a huge set
of functionalities as a skill in a generic way. Interface-wise,
only the parameter set changes. The skill type can be used
for various hardware: robots, tools, cameras, manufacturing
machines, and many more. Our model is not limited to only
hardware, but can also be used for software components: A
software component can provide more complex functionality
by reusing skills of other components. This way, one can
define a hierarchical skill composition. A robot controller can
implement a movement skill and an attached gripper enclosed
by a separate OPC UA server can provide a corresponding
gripper skill as shown in Fig. 1. The robot and gripper
skills are completely independent. A new simple software
component can reuse the PickPlaceSkillType to implement
a basic pick-and-place functionality, by synchronizing and
controlling the lower-level skill state machines of the robot
and the gripper. This software component can be reused for
any combination of robot and gripper hardware if both are
using our predefined skill model for moving and gripping. A
robot which already combines a gripper with motion axes can

3



fortiss Robotics

fortiss Devices

OPC UA
ProgramStateMachineType

SkillType

MoveSkillType

LinearMoveSkillType PtpMoveSkillType

CartesianLinearMoveSkillType JointLinearMoveSkillType CartesianPtpMoveSkillType JointPtpMoveSkillType

MaxVelocity[6]

MaxAcceleration[6]

MaxVelocity[]

MaxAcceleration[]

ICartesianMoveSkillParameterType

TargetPosition

IJointMoveSkillParameterType TargetJointPosition[]

ParameterSetParameterSet

ParameterSet ParameterSet

AxisBounds[]

HasInterface HasInterfaceHasInterface
HasInterface

ToolFrame ParameterSet StreamSkillType

PositionStreamSkillType ParameterSet TargetPosition

Fig. 3. Robot skill types which can be implemented by a robot (blue). The required parameters (green) are inherited from the corresponding supertype.
Cartesian and joint skill types inherit the interface (yellow) to avoid duplication of parameter sets. The OPC UA modeling notation is used, as described
in [5].

directly provide the Pick and Place skill in addition to the
other move skills.

In combination with ontologies for OPC UA, it is possible to
automatically assign tasks to components as presented in [15].
With this ontology, higher level knowledge is mapped to low
level functionality, including the recipe on how to execute
this specific functionality. A higher level ontology mapping is
used to model the relation of software components and their
composed hardware skills.

In Fig. 3 the skill type hierarchy for the most basic robot
skills is shown. All skills moving the robot based on a specific
tool frame should be subtypes of the MoveSkillType. The
MoveSkillType defines the mandatory ToolFrame parameter,
which indicates the frame on the robot, which should be used
to reach the target. Most robot manufacturers allow to define
different frames for different tools.

A typical industrial robot can perform Point-to-Point (PTP)
movements, defined as the abstract PtpMoveSkillType, or lin-
ear (LIN) movements defined as the abstract LinearMoveSkill-
Type. Since a PTP movement is based on the robot axes, the
required parameters are an array of maximum acceleration and
maximum speed values for each axis. The LIN movement re-
quires six acceleration and six speed parameters: the first three
for the position, the last three for the orientation. The abstract
PTP and LIN move skills are again subtyped into cartesian and
joint movements, where the client can either define the new
pose in cartesian space, or by setting the new joint angles. This
results in four more skill types: CartesianLinearMoveSkill-
Type, JointLinearMoveSkillType, CartesianPtpMoveSkillType,
JointPtpMoveSkillType. To reuse the parameter definition for
both cartesian skill types and joint skill types, we use the
concept of interfaces: The ICartesianMoveSkillParameterType

adds two Parameters: TargetPosition as the absolute goal po-
sition in cartesian space (ThreeDFrameType) and an optional
AxisBounds two-dimensional array which can limit the solu-
tions of the inverse kinematics calculation. IJointMoveSkill-
ParameterType adds the TargetJointPosition array which gives
the absolute target joint angle for every axis.

These skill types currently represent absolute coordinates.
It is possible to extend the model to support relative coor-
dinates by adding an additional Boolean parameter to the
MoveSkillType which allows the distinction between absolute
and relative. Another approach is to add more skill types, one
for absolute, and one for relative movements each.

Some robot manufacturers provide real-time position
streaming interfaces. In this case, a remote client is sending
new joint positions in a specified control frequency. For this
interface we define the PositionStreamSkillType which takes
the target joint position as a parameter. As soon as this skill is
started, the execution will continuously check for new values
in the target position parameter and instruct the robot to move
to that joint position. Based on the position streaming skill, a
software component can be created which takes this skill and
provides higher-level move skills to clients, as it is shown in
the next section.

For a more complex setup, where two robots need to move
synchronized, position streaming in combination with real-
time capable publish/subscribe communication is required.
Real-time capable skill execution is currently discussed in-
side the corresponding VDMA OPC UA working group
SOArc (service-oriented architecture and real-time control).

Our definition of skill types only defines the parameters
which are required for the specific skill type. It does not define
if and how the robot manufacturer needs to implement the

4



functionality internally and therefore acts as an abstraction
layer of the underlying implementation. A robot manufacturer
may also decide to only support any subset of the skill types.
Every skill type can also be extended by manufacturers to
include additional properties such as the control frequency.

To be able to evaluate our new skill concept, we extend
the newly released OPC UA Companion Specification for
Robotics [5]. In our extension we define a SkillMotionDevice-
Type which implements the ISkillControllerType interface in
addition to the base objects of the MotionDeviceType. The
Skills object contains instances of the SkillType definition and
lists all the available skills the robot provides as shown in
Fig. 2.

The additional skill types for a simple gripper are shown
in Fig. 2: GraspGripperSkillType and ReleaseGripperSkillType
define a skill where the gripper is supposed to grasp an
object (close the fingers) or release it (open the fingers).

Our extended skill model and the extended robotics com-
panion specification are available as a NodeSet2.xml file on
our GitHub repository.

IV. IMPLEMENTATION

After defining our skill model, we implemented proof-of-
concept applications to validate the applicability of the generic
model to robots from different manufacturers in combination
with different grippers. We are using C++ as the program-
ming language. The OPC UA interface is based on the well
maintained and actively developed open62541 open source
OPC UA stack4. This section describes the concept of our
implementation and the necessary contributions to the open
source OPC UA stack.

Event notifications are an important feature of OPC UA
Programs which was missing in the open62541 OPC UA
Stack at the time we started our implementation. Therefore
we decided to first implement events support in open62541
and made it available to the open source community as part
of the open62541 stack5. Additionally, we fixed many bugs in
the nodeset compiler and extended its features to be able to
include any NodeSet2.xml into the open62541 stack. All these
changes are already included in the master branch on GitHub.

A. Information Modeling

Based on the improvements of the open62541 stack, we
were able to define our own nodesets. The following nodesets
were modeled using the Model.xml format in combination
with the official UA-ModelCompiler6 to generate the Node-
Set2.xml format which is needed to distribute our custom
nodesets. A tutorial on how to create custom NodeSet2.xml
is available online7. All the files are available in our GitHub
repository.

https://fortiss.org/UA/Device/ (fortiss DI) extends the
OPC UA for Devices Integration (DI) nodeset (OPC UA DI)

4https://open62541.org
5https://github.com/open62541/open62541/pull/1739
6https://github.com/OPCFoundation/UA-ModelCompiler
7https://opcua.rocks/custom-information-models

and contains the definition of the following types: SkillType,
GripperSkillType, GraspGripperSkillType, GraspGripperSkill-
Type, ReleaseGripperSkillType.

https://fortiss.org/UA/Robotics/ (fortiss ROB) is based on
fortiss DI and the recently released OPC UA Companion Spec-
ification for Robotics (OPC UA ROB). fortiss ROB contains
the move skill types and parameter definitions as shown in
Fig. 3.

Every specific robot implementation has its own nodeset
definition which extends fortiss ROB by defining specific
object instances of the supported move skill types and motion
devices as defined in OPC UA ROB. In our implementation we
created three additional nodesets for every robot we are using
in the evaluation: https://fortiss.org/UA/iiwa/ (fortiss
IIWA), https://fortiss.org/UA/edo/ (fortiss EDO),
https://fortiss.org/UA/universal robots/ (fortiss UR).

B. Skill composition

Our skill model is not limited to only hardware functionality,
but can also be used to offer software functionality as a skill by
reusing the defined skill types. Any component can have built-
in OPC UA clients which control one or more other skills,
while offering the composed functionality through an OPC UA
server to other components. Fig. 1 shows such an example,
where the software component uses the two skills, MoveSkill
and GripperSkill, to offer a PickPlaceSkill.

Again, the skill model just defines the interface, but not
how it has to be implemented. Internally, the PickPlaceSkill
software component will use two OPC UA clients to control
the underlying skills while offering its functionality through
its own OPC UA server. With this approach, the software
component can be used in combination with any other compo-
nent which implements the required skill types. Even stacking
multiple components on top of each other would be possible.
For example, a software component uses the position stream-
ing skill, to provide higher-level move skills for cartesian
movements. The pick-and-place component can then use these
provided move skills to interact with a robot which does not
offer any high-level skills.

Implementing concurrent skills, where two movements
should be executed in synchronized motion can also be
achieved with our skill model: A separate software component
provides the corresponding skill type, which hierarchically
groups two or more low level move skills. The higher skill
only finishes once both movements have finished. There is no
limitation on how the skills are combined on a higher level.

C. Generic class model

The nodeset compiler of open62541 converts the Node-
Set2.xml format into C source code which automatically
creates all the defined nodes in the OPC UA server. This means
that for every instance of a SkillType, all the mandatory nodes
are created, but the functionality, especially the handling of the
state machine and the skill functionality is still missing.

This needs to be implemented in addition to the generated
code using the open62541 server API. In order to reuse as

5



much code as possible for different device-specific imple-
mentations, we use object-oriented programming with class
inheritance in C++. All our source code is available as open
source and can be built with a single command to be able to
easily deploy our software on one of the presented robots.

We define a generic Program class which registers the
method callbacks for the state transition methods of an
OPC UA Program and also handles the event creation for state
transitions. The SkillBase class extends the Program
class and acts as a basis for all skill implementations. Due to
this abstraction, a specific skill implementation only needs to
implement the hardware interface and does not need to handle
the OPC UA specific configuration. This is achieved by using
lambda callback functions. A client first sets the parameters for
a skill and then calls the start method. The underlying skill
implementation is triggered by the start callback and reads
the parameters. State transitions and event handling are done
transparently.

D. Robot control

Typical industrial robots currently do not provide any
OPC UA interface. Therefore, we developed C++ OPC UA
wrapper applications based on the open source Robotics Li-
brary [16] and implemented the OPC UA Robotics companion
specification and our own skill-specific specifications. The
Robotics Library provides a C++ API hardware abstraction
and kinematics calculation for different robots. The already
existing hardware driver for Universal Robots is using the
position streaming interface, which is wrapped by a Position-
StreamSkillType.

The Comau e.DO robot provides a Robot Operating Sys-
tem (ROS) interface to control the robot. Here we are using
the direct joint control topics in combination with a custom
Robotics Library driver, which again offers a PositionStream-
SkillType.

For both these robots a software component was developed,
which uses the PositionStreamSkillType and offers LIN and
PTP move skills via OPC UA. This is achieved by initializing
the software component with the corresponding robot kine-
matic settings from a file. In a later stage it is planned that
the OPC UA Robotics companion specification will provide
the robot kinematics definition directly in the server’s address
space. Therefore the robot-specific configuration files can be
omitted in the future.

Our KUKA iiwa driver opens a dedicated TCP socket to the
robot controller which is used to send async move commands
to the robot. Therefore this OPC UA server does not provide a
position streaming interface, but the higher-level move skills.

In this paper, we do not focus on the specific driver interface
implementation since it is only used for proof of concept of
our skill model. In the long run we expect manufacturers to
offer OPC UA servers which can be used in combination with
our skill model. The effort to implement our skill model is
kept as low as possible since our open source base classes
can be reused.

In addition to the robot drivers, the Robotics Library has an
abstraction layer for various other hardware devices, such as
for the gripper which we use in our demo application: Weiss
WSG 50.

The hierarchical grouping of skills is shown in two demo
applications. One is the use of a software component which
provides higher-level move skills based on the position stream-
ing skill. The other demo is using different kinds of robots,
where either the tool is a separate component mounted on the
flange (KUKA iiwa and Weiss WSG 50), or where the tool
is directly integrated in the robot (Comau e.DO). In the latter
case, the robot’s OPC UA server can directly provide a Pick-
and-Place skill, whereas on the iiwa, the Pick-and-Place skill
is implemented through a separate software component which
uses the generic skill interface of the robot and the gripper, as
shown in Fig. 1.

Since all our OPC UA servers provide the same move skills
independent of the manufacturer, a generic client was devel-
oped. This generic client can control any robot implementing
the previously described skills without knowing the robot
specifications. The Pick-and-Place skill is also abstracted from
the hardware, therefore the client has the ability to control
any robot-gripper combination which supports our skill model.
The movements are only limited by the robot’s kinematics as
mentioned in the evaluation section.

If an error occurs during the execution of a movement, the
state machine of the skill emits a state transition to the Halted
state which indicates an error state. This error state needs to be
confirmed by explicitly calling the reset method on the skill
itself. Depending on the underlying implementation and the
error itself the state machine may switch to the ready state,
or stay in the halted state. A new skill execution can only be
started if the state machine is in the ready state.

The evaluation in the following section is conducted using
this generic client and the described robot control implemen-
tation.

V. EVALUATION

To evaluate the generic skill model, we developed OPC UA
servers which implement the skill model as described in previ-
ous section for three different Robots: KUKA iiwa, Universal
Robots UR5, and Comau e.DO. Since all our OPC UA servers
offer the same interface, we developed a generic client which
uses the move skills of each robot to control it, independent
of the hardware.

The functionality is shown by moving the robots in cartesian
space, in a way that they move along a vertical square with
the width and height of 10 cm. First of all it is important to
mention that all robots have a completely different hardware
setup and joint lengths. Especially the KUKA iiwa has seven
degrees of freedom, whereas the UR5 and the e.DO robot have
six. Still, the same CartesianLinearMoveSkill can be used for
cartesian movements, since the robot trajectory is interpolated
by the Robotics Library.

The execution steps are as follows: Use CartesianPtp-
MoveSkill to move the robot to the start position. The relative

6



cartesian coordinates of the start position vary depending
on the robot, since every robot has its own cartesian space
it can reach. Then start a loop which repeats the same
sequence of CartesianLinearMoveSkill calls, relative to the
start position, three times, which forms a square. The video of
all robots executing these steps is shown at https://youtu.be/
O9WNyua72XA and selected screenshots are shown in Fig. 4.

The hierarchical skill model is evaluated by implementing
a Pick-and-Place application using the same OPC UA client,
but different robot types. The KUKA iiwa has an external
Weiss WSG50 Gripper mounted on its end effector. A software
component combines the gripper’s and the robot’s OPC UA
server using OPC UA clients, and offers the PickPlaceSkill.
On the Comau e.DO, which has already a proprietary gripper
integrated as a seventh joint, the PickPlaceSkill is directly
implemented on the robot’s OPC UA server. The client then
only needs to browse the known OPC UA servers in the
network for available skills, as presented in our previous
publication [17]. The execution of the Pick-and-Place skill
on the e.DO Robot and the KUKA iiwa is also included in
the previously linked video and shows that the generic client
can use the skill model to execute a pick and place task
independent of the provided hardware.

Using this client our skill model has proven to be very robust
and a suitable way for controlling robots using OPC UA. The
skill implementation does not depend on the duration of the
movement.

The presented MoveSkillTypes only support sequential robot
movements: a new move command can only be sent after the
previous execution has finished. If blending robot movements
are required, one has to use the PositionStreamSkillType di-
rectly, or create a new software component which takes a list
of points and blending configuration to control the robot via
its position streaming interface.

A shortcoming of our current skill model is the support
of atomic operations. A client first needs to set the skill
parameters and then call the start method. In the current
implementation, racing conditions may occur where another
client writes a new set of parameters in-between another
client’s write and start call. This may lead to dangerous
behavior. In our test setup, we only allow one client to be
connected to the robot. This problem can be circumvented
by adding intermediate ready states: If a skill is ready to
receive new parameters, it is in the ReadyNotConfigured state.
As soon as a client parametrizes a skill, the internal state
changes to ReadyConfigured. While this state is active, clients
are not allowed to set new parameters but only to start the skill
execution. These and further improvements will be included
in a future release of our model.

One further issue we faced when using the generic client
is the different geometries and workspace areas of the robots.
Not all robots can reach the same cartesian position. Therefore
the client first checks, to which robot it is connected and adapts
the start pose correspondingly. Future planned extensions
of the Robotics Companion Specification will also allow to
implement clients which can automatically adapt the position

based on the given robot kinematics and geometry information.
Currently, we are also implementing and evaluating more

complex skill types, like a cartesian linear move with force
limitation: The KUKA iiwa robot includes force-torque sen-
sors in the joints. The force of the movements of this specific
skill type can be limited. If the force exceeds the predefined
limit, the state machine changes to the HaltedForce state.
Using the hierarchical skill model, one can also implement
a software component which provides this cartesian linear
move skill with force limitation, by using the CartesianLinear-
MoveSkillType of a robot and force feedback from an external
force-torque sensor. Initial experiments show that our skill
model can also be used for such complex skills. The results
of this experiment will be published at a later stage.

In this paper, we focused on the basic principle of hardware-
independent robot, tool, and device skills. An extension of our
skill model will be shown in future publications.

VI. CONCLUSION

In this paper, we define a generic skill model which allows
easy integration of system components while keeping the
same interface description. The skill model is described as
an OPC UA nodeset, while the implementation is done using
the open source OPC UA stack open62541 and our own C++-
based skill implementation. Due to the generic skill interface,
hierarchical composition of skills can easily be achieved.

Some example skill types for robot movements and gripper
control are presented. Our model is not limited to these types
but can be extended to any domain.

The model is evaluated with a proof-of-concept application
using three different industrial robots: KUKA iiwa, Universal
Robots UR5, and Comau e.DO.

We show that one OPC UA client can control different
robots using the same interface description and without chang-
ing the implementation. This shows that easy exchange of the
used hardware, even across different manufacturers, is possible
by using our generic skill model.

One of the major issues is the support of OPC UA through-
out the industry, especially the support of specific OPC UA
companion specifications. Our paper proposes the structure
and NodeSet for a generic skill model but keeps the specific
implementation open, so that other commercial and open-
source OPC UA stacks can implement the same interface.
Hardware vendors need to be convinced to adapt our proposed
interfaces. To achieve this goal the authors of this paper are
participating in two VDMA OPC UA companion specification
working groups: OPC UA for Robotics and OPC UA for
Service-oriented Architectures and real-time control8.

ACKNOWLEDGMENT

The research leading to these results has been funded
by the Bavarian Ministry of Economic Affairs, Regional
Development and Energy (StMWi) under grant agreement
no. IUK-1711-0033 in the project Data Backbone with project
support from the Zentrum Digitalisierung Bayern (ZD.B).

8https://opcua.vdma.org/

7



(a) KUKA iiwa: top right (b) KUKA iiwa: bottom right (c) KUKA iiwa: bottom left (d) KUKA iiwa: top left

(e) Universal Robots UR5: top right (f) Universal Robots UR5: bottom
right

(g) Universal Robots UR5: bottom left (h) Universal Robots UR5: top left

(i) Comau e.DO: top right (j) Comau e.DO: bottom right (k) Comau e.DO: bottom left (l) Comau e.DO: top left

Fig. 4. Photo sequences showing the execution of the square movement. Every robot moves along a 10cm square clockwise using the same OPC UA client.
The whole execution can be seen in https://youtu.be/O9WNyua72XA.

REFERENCES

[1] Arbeitskreis Industrie 4.0, “Umsetzungsempfehlungen für das Zukun-
ftsprojekt Industrie 4.0.” Forschungsunion im Stifterverband für die
Deutsche Wirtschaft e.V., Tech. Rep., 2012.

[2] ZVEI, “The Reference Architectural Model Industrie 4.0 (RAMI 4.0),”
Zentralverband Elektrotechnik- und Elektronikindustrie e.V. (ZVEI),
Tech. Rep. July, 2015.

[3] S. Profanter, A. Tekat, K. Dorofeev, M. Rickert, and A. Knoll, “OPC
UA versus ROS, DDS, and MQTT: Performance Evaluation of Industry
4.0 Protocols,” in Proceedings of the IEEE International Conference on
Industrial Technology (ICIT), Melbourne, 2019.

[4] K. Dorofeev, C.-H. Cheng, P. Ferreira, M. Guedes, S. Profanter, and
A. Zoitl, “Device Adapter Concept towards Enabling Plug&Produce
Production Environments,” in Proceedings of the IEEE International
Conference on Emerging Technologies and Factory Automation (ETFA),
Limassol, 2017.

[5] OPC Foundation, “OPC UA for Robotics Companion Specification Part
1: Vertical integration,” Tech. Rep., 2019.

[6] J. Pfrommer, D. Stogl, K. Aleksandrov, V. Schubert, and B. Hein,
“Modelling and orchestration of service-based manufacturing systems
via skills,” in Proceedings of the IEEE International Conference on
Emerging Technologies and Factory Automation (ETFA), 2014.

[7] P. Ferreira and N. Lohse, “Configuration model for evolvable assembly
systems,” in CIRP Conference on Assembly Technologies and Systems
(CATS) 2012, no. May 2012, 2012, pp. 75–79.

[8] M. Schleipen, J. Pfrommer, K. Aleksandrov, D. Stogl, S. E. Navarro,
K. Engler-Bunte-Ring, and J. Beyerer, “AutomationML to describe skills
of production plants based on the PPR concept,” in Proceedings of the
AutomationML User Conference, 2014.

[9] W. Meeussen, E. Fernandez Perdomo, J. Bohren, D. Coleman, B. Mag-
yar, V. Pradeep, E. Marder-Eppstein, M. Lüdtke, G. Raiola, S. Chitta,
and A. Rodrı́guez Tsouroukdissian, “ros control: A generic and simple

control framework for ROS,” The Journal of Open Source Software,
vol. 2, no. 20, p. 456, 2017.

[10] M. R. Pedersen, S. Bøgh, O. Madsen, V. Krüger, L. Nalpantidis,
C. Schou, and R. S. Andersen, “Robot skills for manufacturing: From
concept to industrial deployment,” Robotics and Computer-Integrated
Manufacturing, vol. 37, pp. 282–291, 2015.

[11] M. Kaspar, Y. Kogan, P. Venet, M. Weser, and U. E. Zimmermann,
“Tool and technology independent function interfaces by using a generic
OPC UA representation,” in Proceedings of the IEEE International
Conference on Emerging Technologies and Factory Automation (ETFA),
2018, pp. 1183–1186.

[12] K. Dorofeev and A. Zoitl, “Skill-based Engineering Approach using
OPC UA Programs,” in Proceedings of the IEEE International Confer-
ence on Industrial Informatics (INDIN), 2018.

[13] OPC Foundation, “OPC UA Specification Part 10 - Programs. Release
1.04,” OPC Foundation, Tech. Rep., 2019.

[14] K. Dorofeev and M. Wenger, “Evaluating Skill-Based Control Ar-
chitecture for Flexible Automation Systems,” in Proceedings of the
IEEE International Conference on Emerging Technologies and Factory
Automation (ETFA), Zaragoza, Spain, 2019.

[15] A. Perzylo, S. Profanter, M. Rickert, and A. Knoll, “OPC UA NodeSet
Ontologies as a Pillar of Semantic Digital Twins of Manufacturing
Resources,” in Proceedings of the IEEE International Conference on
Emerging Technologies and Factory Automation (ETFA), Zaragoza,
Spain, 2019.

[16] M. Rickert and A. Gaschler, “Robotics Library: An object-oriented ap-
proach to robot applications,” in Proceedings of the IEEE International
Conference on Intelligent Robots and Systems (IROS), 2017, pp. 733–
740.

[17] S. Profanter, K. Dorofeev, A. Zoitl, and A. Knoll, “OPC UA for plug &
produce: Automatic device discovery using LDS-ME,” in Proceedings
of the IEEE International Conference on Emerging Technologies and
Factory Automation (ETFA), 2018.

8


