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Abstract—Ethernet-based protocols are getting more and more
important for Industry 4.0 and the Internet of Things. In
this paper, we compare the features, package overhead, and
performance of some of the most important protocols in this
area. First, we present a general feature comparison of OPC UA,
ROS, DDS, and MQTT, followed by a more detailed wire
protocol evaluation, which gives an overview over the protocol
overhead for establishing a connection and sending data. In the
performance tests we evaluate open-source implementations of
these protocols by measuring the round trip time of messages in
different system states: idle, high CPU load, and high network
load. The performance analysis concludes with a test measuring
the round trip time for 500 nodes on the same host.

I. INTRODUCTION

Industry 4.0 is a current trend in industrial automation
which is often referred to as the fourth industrial revolution.
Its main goal is to modernize the way manufacturing and
production work by easing the integration of devices and by
improving the communication between all the devices on the
shop floor. Components from different manufacturers need to
communicate in a common language by using standardized
communication protocols. Current manufacturing systems use
are a lot of vendor-dependent field bus protocols that handle
this task. As a result, an integrated system can suffer from
many different communication paradigms which reduce the
system’s overall flexibility and adaptability.

In this paper, we evaluate the performance and resource
usage of some of the most common protocols in the area of
industrial automation and Internet of Things (IoT): OPC UA,
DDS, ROS, MQTT. We chose these protocols since they
are commonly used in our research projects. Other possible
candidates for further evaluation could be CoAP, XMPP, and
AMQP.

According to [1], these protocols are among the most impor-
tant ones to be considered in IoT applications. All presented
protocols try to deal with the problem described above by
providing a standardized, open, and manufacturer-independent
protocol. With new and improved real-time features added
to Ethernet-based protocols over the last few years, they are
slowly replacing conventional and proprietary field bus com-
munication [2]. One of the major advantages of Ethernet-based
protocols is the well known standard which is implemented in
many different operating systems and microcontrollers, thus
resulting in lower hardware costs. Field bus protocols on the

S. Profanter, K. Dorofeev, M. Rickert, A. Knoll are with fortiss, An-Institut
Technische Universität München, Munich, Germany.

A. Tekat is with Technische Universität München, Munich, Germany.

other hand are either implemented as closed source or only on
specific hardware in combination with licensing fees.

Today, there is a growing demand in the industry for
distributed applications, where multiple devices from different
vendors control different types of objects [3]. Selecting an
appropriate middleware, a software layer located between
applications and operating system, becomes one of the most
crucial tasks to simplify and speed up a development of
distributed systems [4]. As these industrial systems usually
require hard real-time constraints, the performance of a mid-
dleware layer becomes a critical issue when designing such a
system.

This paper is split into multiple sections: Section II gives
a short overview on related work. The main concepts and
application domains of the different middlewares are described
in Section III followed by a more detailed evaluation of the
package overhead of the underlying protocol in Section IV.
Section V introduces our architecture for performance testing
and lists some of the tests we used for comparison. This
section also describes some of the tools used to test the
protocols under heavy system and network load. In Section VI
the most important results of the comparison are shown and
discussed. In Section VII we give a summary of the results
and an outlook on future work.

II. RELATED WORK

Numerous performance tests have already been conducted
in various domains. In the IoT domain, where a usual scenario
includes resource-constrained devices communicating with
each other over low-bandwith or probably unreliable wireless
networks, the question of the communication protocol’s per-
formance evaluation is seen as a crucial one. [5] compares
bandwidth consumption and latency of most common IoT
protocols, including MQTT, CoAP, and DDS. [6] evaluates
CoAP, MQTT, MQTT-SN, TCP, and Websockets, also com-
paring energy performance and CPU power consumption for
each of the protocols. A performance comparison of data usage
and the time spent to send and receive messages for MQTT
and OPC UA can be found in [7].

A survey of supported communication paradigms between
OPC UA and DDS is presented in [8], with a focus on how
both protocols can be run in hybrid deployments.

Some papers present performance evaluations for a specific
protocol: [9] shows how an OPC UA server performs in a
field device, measuring response times, memory, and CPU
utilization of an OPC UA Server running on an Altera Cy-
clone I FPGA. [10] evaluates the performance of different



OPC UA features, such as security, binary transport, and SOAP
transport, while [11] gives an overview over the features of
different OPC UA implementations, including open62541, an
open source C (C99) implementation of OPC UA used in our
tests. A more detailed comparison between ROS and ROS2,
especially considering different DDS implementations such as
Connext, OpenSplice, and FastRTPS is evaluated in [12]. They
show that using DDS for ROS2 gives a significant performance
improvement compared to ROS1.

As of now previous related work mainly focuses on the
comparison of one specific middleware, or on the performance
evaluation between a subset of the protocols presented in
this paper. For our evaluation we focus on some of the
most used protocols in Industry 4.0 and present a side-by-
side comparison for OPC UA, DDS, MQTT and ROS. We
also evaluate the performance of multiple nodes on the same
host, showing significant differences between the presented
protocols.

III. MIDDLEWARE COMPARISON

A middleware provides a communication abstraction layer
between different components in a distributed system. It is
able to bridge the gap between individual subsystems running
on different hardware platforms, operating systems, and pro-
gramming languages. The development of a distributed system
composed of heterogeneous devices from various vendors
becomes a complicated task that, among others, must en-
sure communication between numerous devices. Middlewares
enable the developer to manage the complexity of this task
by introducing an intermediate software layer that provides
a high-level API with an abstraction of the low-level details
related to communication and application distribution.

OPC UA (Open Platform Communications Unified Ar-
chitecture) is a service-oriented machine-to-machine commu-
nication protocol mainly used in industrial automation and
defined in the IEC 62541 specification. Its main goals are to
provide a cross-platform communication protocol while using
an information model to describe the transferred data. The
various features and components of OPC UA are described
in different specification parts released and publicly available
by the OPC Foundation1. OPC UA is mainly driven by the
European manufacturing industry and thus gains more and
more importance in that area while also becoming one of
the more important protocols worldwide. The major strength
of OPC UA is the semantic description of the address space
model together with various companion specifications which
extend the basic semantic descriptions for various domains
like PLCopen, robotics, or computer vision. OPC UA recently
released a Publish/Subscribe specification. It enriches OPC UA
with a Publish/Subscribe concept similar to DDS, where
servers can publish data and clients can subscribe to this data,
independent of the data origin. OPC UA Publish/Subscribe
does not include any quality of service (QoS) mechanisms

1https://opcfoundation.org/about/opc-technologies/opc-ua/

itself. In combination with, e.g., Time Sensitive Network-
ing (TSN) on layer 2, OPC UA Publish/Subscribe or MQTT
can also support additional QoS principles.

DDS (Data Distribution Service) is a data-centric publish-
subscribe middleware for highly dynamic distributed systems.
It is standardized by the Object Management Group (OMG)2.
Compared to OPC UA, DDS is more data centric: data is pub-
lished into the DDS domain and subscribers can subscribe to
data from that domain without knowing where the information
came from or how it is structured, as the information package
already describes itself. In OPC UA every node is described
in the address space of the server. A client can query this
information and use it together with the received data. DDS
provides an extensive set of QoS parameters, e.g., durability,
lifespan, presentation, reliability, and deadlines3. Similar to
OPC UA, DDS also supports dynamic discovery without a
central instance. According to the OMG’s website, DDS is one
of many protocols used in industry sectors such as railway
networks, air traffic control, smart energy, medical services,
military and aerospace, and industrial automation4.

ROS (Robot Operating System) is an open-source soft-
ware framework originally developed by Willow Garage and
supported by the Open Source Robotics Foundation (OSRF)
together with a large community5. Its main target are research
institutes in various areas with a focus on encouraging collabo-
rative robotics software development within a large ecosystem.
ROS industrial is trying to extend ROS by capabilities for the
industrial manufacturing area. The successor of ROS, ROS2
is currently under heavy development. Instead of using the
proprietary message formats from ROS, it is built on top of
DDS. As we also include DDS in our evaluation, specifically
eProsima Fast RTPS as the default DDS implementation for
ROS2, the results from this evaluation can also be transferred
to ROS2. A more detailed comparison between DDS and
ROS2 and the different DDS implementations will be con-
ducted at a later stage.

MQTT (Message Queuing Telemetry Transport) declares
itself as an extremely lightweight publish/subscribe machine-
to-machine and Internet of Things connectivity protocol6.
It is an open message protocol which mainly focuses on
a small code footprint and low network bandwidth usage,
while handling high latency or bad network connections.
Communication between sensors via satellite link is therefore
one of its use cases. Since 2013, MQTT is standardized by the
Organization for the Advancement of Structured Information
Standards (OASIS) as the protocol for the Internet of Things7.
MQTT uses the concept of an MQTT-Server, also known
as a broker, which holds the complete data of all of its

2https://portals.omg.org/dds/
3http://download.prismtech.com/docs/Vortex/html/ospl/DDSTutorial/qos.

html
4http://portals.omg.org/dds/who-is-using-dds-2/
5http://www.ros.org/
6http://mqtt.org/
7https://www.oasis-open.org/news/announcements/

mqtt-version-3-1-1-becomes-an-oasis-standard
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communication partners. With this concept, small devices
simply report data to the Broker and do not need to store the
data themselves. The devices can also be controlled through
the broker. The published data is grouped hierarchically similar
to DDS and multiple devices can publish to the same topic.
MQTT supports some basic QoS to define if and how often
a message should be re-sent until it is acknowledged by the
broker and if the server should cache topic data.

OPC UA’s device-centric approach focuses on device inter-
operability, where devices may be used in different systems,
while DDS focuses on software integration mainly in a single
type of system. This may be one of the reasons why OPC UA
is more likely to be adopted in the manufacturing industry:
a typical production line is built up using many different
types of systems, whereas systems like air traffic control come
from one vendor and all system components are fine-tuned
to each other. The focus of ROS is hardware abstraction,
the collaboration between different research groups, and re-
usability of software components. MQTT’s focus is on small
code footprint and low network bandwidth, which is one of
the reasons MQTT does not offer as many extra features such
as Remote Procedure Call (RPC) or Discovery.

Table I gives an overview of the basic features for
each of the presented middleware protocols. Every proto-
col can be used on top of TCP, whereas MQTT does not
support UDP communication. In ROS, all clients have to
support TCP (TCPROS), optionally they can also support
UDP (UDPROS) which is currently only implemented by
roscpp. Some DDS implementations also support shared mem-
ory (SHM): if multiple nodes are running on the same host, the
data is exchanged via shared memory instead of the loopback
network adapter. Additionally, DDS standardizes the user API,
which means that in theory it should be possible to exchange
different DDS implementations without changing the source
code. Practically this is hard to achieve since every DDS
implementation adds additional specific methods to configure
the stack.

All presented middlewares support the Publish/Subscribe
(Pub/Sub) pattern. Remote Procedure Calls (RPC) are natively
supported by OPC UA and ROS. RPC for DDS is standardized
but not implemented in many implementations. MQTT does
not support RPC at all.

OPC UA uses the address model to provide data to the
clients. This address model includes a semantic annotation
of the data which allows clients to automatically infer the
meaning of specific data values without previous knowledge.
In ROS, DDS, and MQTT, data values are published on
specific topics, which means that clients have to know the topic
they need to subscribe to in advance. DDS additionally uses
domains and partitions for the information scope. The only
way to infer some additional meaning is to use the topic name,
which is not as powerful as it is in OPC UA. In OPC UA,
every node can have multiple typed references to other nodes,
which is similar to a triple storage database as it is commonly
used for semantic modeling.

Security is an important feature for every middleware which

TABLE I: Comparison of the protocols used in the evaluation
and their main features.

OPC UA ROS DDS MQTT

Communication TCP, UDP TCP, UDP TCP, UDP,
SHM TCP

Patterns RPC,
Pub/Sub

RPC,
Pub/Sub

(RPC),
Pub/Sub Pub/Sub

QoS No No Yes Yes
Authentication User, PKI (Mac) PKI User, PKI
Encryption Yes No Yes Yes
Std. API No No Yes No
Semantic Data Yes No No No

is used in the domain of industrial automation and IoT.
Table I shows that OPC UA and MQTT support authentica-
tion via username and password or by using a private key
infrastructure (PKI). DDS only supports PKI authentication,
ROS only supports authentication via MAC Address using
third-party packages. ROS is also the only protocol which
does not support application layer encryption. The additional
efforts (network overhead, CPU load) for encrypting ROS
communication are evaluated in [13].

In our tests, we used the following implementations of each
protocol, all of which are available as open source software.
Commercial stacks exist for OPC UA, DDS, and MQTT.

• open62541: OPC UA implementation. License MPL2.0.
Version 0.3-rc2 (for Pub/Sub: current master df58cf8)

• ROS C++: ROS implementation. License BSD. Version
Kinetic Kame

• eProsima Fast RTPS: DDS implementation. License
Apache 2, Version 1.6.0

• Eclipse Paho MQTT C: MQTT implementation. License
EPL1.0. Version 1.2.1

IV. PACKAGE OVERHEAD

As a first step, we compared the different protocols from
a theoretical point of view by looking at the overhead for
each transmitted package. Every protocol needs some kind of
package header for each data it transmits as a payload of the
TCP package so the remote side knows which kind of data
is sent. This package header adds additional overhead to each
data message transmitted on the network and thus limits the
possible maximal bandwidth which can be reached.

To compare the protocol headers, we had a look at every
protocol specification and compared the protocol header for
different payload sizes of 0 byte, 100 bytes, 1000 bytes and
10 000 bytes as shown in Table II. The table shows the protocol
payload size that is passed from the middleware (OSI layer 5,
Session) to the UDP/TCP transport (OSI layer 4). Note, that
these values do not include TCP or UDP header sizes and
are therefore not influenced by the Ethernet frame size, as the
middleware payload size is independent from this if the frames
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are split at a lower layer. Additionally, we verified the values
using Wireshark8.

For OPC UA, we evaluated the overhead for a variable
write request from the client to the server without encryp-
tion, which would add additional overhead. In OPC UA,
the client first needs to open a secure channel (OpenSecure
ChannelRequest, 132 bytes), get the available endpoints (Get
EndpointsRequest, 93 bytes), create a session (CreateSession
Request, 138 bytes, depending on the hostname, here
localhost:4840), and then activate the session (Activate
SessionRequest, 137 bytes, depending on the identity token
length, here open62541-anonymous-policy), before a
write request can be sent. At the end, the client should close
the session (CloseSessionRequest, 75 bytes) and the secure
channel (CloseSecureChannelRequest, 57 bytes). The total
sum of these TCP payload bytes for opening and closing the
connection in OPC UA without the WriteRequest sums up to
132 + 93 + 138 + 137 + 75 + 57 = 632 bytes.

MQTT is using its own lightweight TCP-based binary proto-
col. The payload of the connect command to the MQTT broker
depends on the publisher name. In our case, we only used one
character for this, which resulted in a payload of 15 bytes
for the connect command and 2 bytes for the disconnect
request. The size of the publish message also depends on
the topic name. With one character as the topic name, the
overall overhead for connection handling in MQTT sums up
to 15 + 2 = 17 bytes.

In ROS, the first step is to start the ROS core on one
machine. Every started ROS node requires the ROS core’s
IP address. On startup, the node sends XMLRPC requests to
the core to exchange information about the current system
state and any subscribers and publishers for the node’s topics.
Only if there is a matching subscriber/publisher pair, the
two nodes are connected via a separate TCP connection and
the TCPROS protocol specifically for this subscription. On
shutdown, the ROS node unregisters itself from the core via
XMLRPC9. In our test, the overall sum of the TCP package’s
payload size for outgoing XMLRPC requests—connecting
and exchanging information with the core (5693 bytes) and
disconnecting at the end (3046 bytes)—was 8739 bytes. This
does not include the TCPROS messages that are exchanged
between the nodes. On the separate TCPROS channel, the
subscriber node connects to the publisher node with additional
information about the desired topic. The publisher node then
returns its own publishing info of size 176 bytes for setting up
the connection. If there is no subscriber for a specific topic,
the data published by the node will not be sent through the
network at all. The final sum of TCP payload bytes for opening
and closing the connection in ROS without published data is
8739 + 176 = 8915 bytes.

The discovery process in DDS depends on the used im-
plementation stack. For our tests, we used the eProsima Fast
RTPS implementation. It uses two phases to discover other

8https://www.wireshark.org/
9http://wiki.ros.org/ROS/Technical%20Overview

TABLE II: Package size in bytes transmitted as TCP/UDP
payload for each protocol with given payload in bytes. The
difference between the final package size and the protocol pay-
load shows the protocol overhead. The last column summarizes
the total bytes for the connection setup in the evaluation.

Payload 0 100 1000 10 000 Connection

OPC UA C/S 96 196 1096 10 096 632
MQTT 5 105 1006 10 006 17
ROS 8 108 1008 10 008 8915
DDS 88 188 1088 10 088 8348

nodes in the network: in the participant discovery phase,
the node sends out multicast messages to discover other
participants in the network and periodically sends heartbeat
packages. When two nodes have found each other, they ex-
change information about published and provided topics with
the other endpoint in the endpoint discovery phase. During the
endpoint discovery phase, the subscriber and publisher have
to acknowledge the other side. Only then can they exchange
information. During this whole setup process in our test, the
server sent a total amount of 8348 bytes, encapsulated in
RTPS (Real-Time Publish Subscribe) packages and delivered
as UDP payload. In OpenDDS, another open source DDS
implementation used in our tests, the discovery process is
implemented by using a central discovery repository. Upon
start, the publisher uses IIOP (Internet Inter-ORB Protocol) to
exchange information with the directory service (add domain
participant, assert topic, add subscription, add publication) on
its own publish data and on the current subscribers. This pro-
cedure sends a total amount of 13 TCP messages with a sum
of 4522 bytes. Unregistering (remove publication/subscription,
remove topic, remove domain participant) results in another
1580 outbound bytes. The total sum of outbound bytes without
exchanging any messages in OpenDDS is 6102. When a
message is published, DDS uses the RTPS protocol, which is
sent through UDP unicast in our setting. The RTPS protocol
can also be configured to use UDP multicast or TCP.

Overall, the evaluation shows that MQTT not only adds
the smallest amount of additional data during the connection
initialization, it also has the smallest overhead when sending
out data messages, as can be seen in Table II. OPC UA with
Client/Server is in second place when looking at the connec-
tion setup overhead, but comes last regarding the message
overhead. ROS requires the largest amount of extra bytes for
setting up the connection between two nodes. This is due
to the fact that it uses XMLRPC, which is sending non-
compressed XML text to the ROS core. On the other hand,
ROS is very efficient when looking at the payload overhead.
DDS has a slightly smaller payload overhead compared to
OPC UA and requires a few bytes less than ROS for setting
up the connection between publisher and subscriber. It can also
be seen, that the protocol overhead is almost constant for all
investigated protocols, independent of the payload size. MQTT
requires an additional byte for messages larger than 127 bytes:
the packet length header field in MQTT is a variable between 1
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and 4 bytes (7 bits plus continuation bit) and is adapted to the
corresponding payload size.

One important reason for the significant differences between
MQTT and ROS compared to OPC UA and DDS lies in the
fact, that MQTT and ROS create a dedicated TCP connection
for every subscriber and publisher pair. They do not need to
include additional information about the published data in the
transmitted package. In OPC UA and DDS different kind of
data can be sent in the same connection, therefore the payload
needs additional identification data.

DDS and OPC UA include the possibility to add additional
diagnostics information for every transmitted data package,
while for the lightweight protocols (ROS, MQTT) this data
needs to be collected separately.

V. TESTING SETUP

Our testing environment is composed of the following
components: a client machine is connected to the tested Linux
server machine acting as a remote host for the latency and
throughput tests via a gigabit network switch (TP-Link TL-
SG1024DE). Both Linux machines have the following speci-
fication: Intel i7-8700K CPU with 3.70 GHz and 64 GB RAM
running on Ubuntu 16.04.4 with Preempt-RT Kernel 4.14.59-
rt37. We used a real-time kernel to ensure high performance
and reproducibility on the tests. A basic evaluation of the setup
results in an average round-trip time (RTT) ping of 0.35 ms
between the two Linux machines. A measurement of the
bandwidth using the Linux iperf command resulted in a value
of up to 724 Mbit/s.

The evaluated middlewares have different feature sets as
described in Section III. To compare the performances of
OPC UA, DDS, ROS, and MQTT, we used the request-reply
pattern as it can be implemented in all protocols and is an
important and often-used feature. In this setup, the server is
responsible for providing the methods a client can call. The
client is responsible for calling the methods on the server and
measuring the server’s performance. For MQTT, DDS, and
OPC UA Pub/Sub, we implemented a request-reply pattern
using two topics: one topic where the data is sent and another
topic where the response is returned. All the tests are designed
to be reproducible with a single command, which also logs
the timing values in a file. Our test suite developed for this
evaluation is open source and available on GitHub10.

To compare the performance and system load during the
tests, we employed the following metrics: CPU usage, RAM
usage, messages per second, and round-trip time (RTT).

For the tests, we used two distinct modes: the acknowl-
edge (ACK) and echo mode. In the ACK mode, a client
sends a request and waits for a simple acknowledgment
message (1 byte) from a server. This mode can be used to
measure the response time for a single message. In the echo
mode, a server replies with the same data bytes, which is
useful to measure the throughput of a middleware. Echo and
ACK modes are executed one after the other. For each mode,

10https://github.com/Pro/middleware evaluation

requests are made continuously without waiting in between
until 5000 requests are sent. In the next step, the payload size is
doubled, starting from 2 bytes and going up to 32 768 bytes in
one request. This process is repeated for both test modes (ACK
and echo).

In addition to the ACK and echo tests, we also tested the
resting RTT. This is the time it takes the server to respond to a
request when it is in a resting state. Within 30 seconds, a client
waits for a random amount of time between 0 and 3 seconds,
sends a single request in ACK mode, and then measures the
RTT.

To evaluate the performance in non-ideal scenarios, where
other processes on the end-device cause high CPU load or the
network is working at full capacity, we used third-party tools to
generate extensive network traffic and CPU usage. For network
traffic, we used the Ostinato11 traffic generator, which can
create sequential and interleaved streams of different protocols
at different rates to generate artificial network load [14]. This
results in a full capacity utilization of the network stack, but
the test should still succeed. The stress12 tool was used to
create artificial CPU load. It is designed to apply configurable
CPU, memory, I/O, and disk stress on the system.

This setup results in 7 tests per middleware: echo and ACK
when the system is in idle state, echo and ACK for CPU load,
echo and ACK for network load, and the resting RTT test.

As a final step, we also evaluated the performance of the
middleware when 500 server instances of the same protocol
are started at the same time on the server machine. The client
machine will then simultaneously send 10 packages with a
payload of 10 240 bytes to 10 nodes running on the server
machine. These 10 nodes will then immediately forward the
received package to the next node on the same machine. The
last step is repeated 50 times, which results in 10 sending
streams running in parallel. In the last node, the messages
are sent back to the client, which will then measure the
complete RTT of all 10 messages. The whole process is
repeated 100 times to average the results. This test shows the
suitability of the protocol for the use case, where a lot of nodes
are running on the same host and data is exchanged primarily
between these nodes. This setup is often used with ROS, e.g.,
where a ROS node is reading a camera image, another node
subscribes to this image, applies preprocessing, and outputs
the result in a new topic.

In the next section, we evaluate some of the most interesting
test results and present the performance of each middleware
implementation.

VI. PERFORMANCE EVALUATION

This section presents the results of our tests as described in
Section V. Note, that for conducting the tests we are using the
most common C/C++ open-source implementations of every
protocol. Therefore, the results may also be influenced by the
corresponding performance of the implementation itself and
may not apply to other implementations of the same protocol.

11https://ostinato.org/
12https://people.seas.harvard.edu/∼apw/stress/
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(a) Echo RTT for different data message size using OPC UA
Client/Server via TCP on Idle, CPU Load, and Network Load.

(b) Echo RTT for different data message size using OPC UA
Publish/Subscribe via UDP on Idle, CPU Load, and Network Load.

(c) Echo RTT for different data message size using MQTT on Idle,
CPU Load, and Network Load.

(d) RTT for sending data with a simple ACK message using different
protocols.

(e) Echo RTT for different data message size using ROS on Idle,
CPU Load, and Network Load.

(f) RTT for sending and receiving data messages using different
protocols.

(g) Echo RTT for different data message size using DDS on Idle,
CPU Load, and Network Load.

(h) Resting RTT for the evalu-
ated protocols sending a payload
of 4 bytes waiting randomly be-
tween 0 and 3 seconds.

(i) RTT for sending 10 packages
with a payload of 10240 bytes
through 500 nodes on a different
host.

Fig. 1: Plots showing the measurement results for an excerpt of the collected data.

6



TABLE III: Average RTT in microseconds for echo and ACK mode with various payloads (in bytes) as visualized in Fig. 1.

Mode Middlware Load 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16 384 32 768
E

ch
o

OPC UA C/S
Idle 520 283 288 280 270 270 360 313 456 546 606 978 1003 1171 1770
CPU 279 258 233 260 276 265 284 293 310 346 461 752 830 955 1467
Net 875 869 876 858 827 864 866 871 875 860 1056 1158 1248 1397 1894

OPC UA P/S
Idle 590 589 510 338 162 270 169 174 305 469 521 446 395 1142 1924
CPU 224 177 178 182 183 265 188 206 242 373 529 620 618 1083 1676
Net 919 930 880 902 911 864 921 901 924 936 1003 1019 1110 1286 1641

MQTT
Idle 584 629 645 641 581 601 622 699 694 725 716 920 1186 1225 1511
CPU 912 905 912 917 911 934 945 944 964 1015 1094 1540 1582 1504 1843
Net 1017 1042 1038 1033 1040 1027 1054 1039 1085 1135 1239 1347 1456 1622 2029

ROS
Idle 618 628 446 396 398 182 296 319 495 814 698 1007 1273 1486 1823
CPU 256 320 295 252 190 305 332 317 359 421 563 1077 1114 952 1427
Net 1017 1014 1009 1012 982 1021 1011 963 1040 1063 1124 1263 1343 1488 1884

DDS
Idle 726 234 236 243 247 252 251 279 270 314 343 454 495 802 1144
CPU 624 631 626 625 624 628 622 644 659 442 351 464 489 782 1050
Net 1091 1086 1070 1111 1063 1088 1102 1099 1123 1114 1184 1190 1270 1432 1806

TCP Idle 250 253 284 303 254 255 307 270 289 315 273 823 811 892 1261

UDP Idle 241 231 208 213 208 162 168 198 238 193 263 263 268 893 1398

A
C

K

OPC UA C/S Idle 383 354 301 294 306 291 293 321 310 305 481 710 681 969 1033
OPC UA P/S Idle 185 180 199 207 196 190 180 195 215 279 222 277 298 785 1265
MQTT Idle 647 602 556 518 606 626 636 646 650 643 629 575 556 740 800
ROS Idle 642 537 321 168 157 248 623 608 437 197 226 871 992 1192 1377
DDS Idle 320 228 234 236 241 243 244 242 252 272 275 355 343 514 784
TCP Idle 235 243 283 187 239 279 196 208 189 237 58 71 81 167 338
UDP Idle 259 223 220 190 155 153 164 169 174 215 359 317 255 502 725

Figure 1 shows an excerpt of some of the most interesting
results from our tests. The corresponding numeric values for
the average RTT are also shown in Table III. In addition to
the protocols described in previous sections, we implemented
two simple echo/ACK servers in C that listen for TCP and
UDP connections and return the received data to the sender or
acknowledge the data by sending one single byte as a response.
The results of these raw TCP and UDP implementation are
included in the figures and show the best reachable RTT for
the corresponding tests without any overhead from a specific
middleware implementation.

Figures 1a to 1c, 1e, and 1g show the box plots for the
RTT of the message being sent to the server side, which
immediately returns the same message for all four protocols.
Every diagram shows the values for the system idle state with
no specific load on the system or the network. The second
value row shows the RTT with 100 percent CPU load on the
server and the last row shows the RTT under high network
load.

Comparing the values for the server in idle state versus
the one with high CPU load, the test results show that the
RTT of OPC UA and ROS does not correlate to the CPU
load of the host and is nearly the same as in the idle
state. Note, that we are using a Preempt-RT patched Linux
kernel and the processes are set to the highest priority for all
protocols. MQTT and DDS show a significant slowdown of
approximately 300 µs compared to the idle state. This leads
to the conclusion, that the Paho MQTT and eProsima Fast
RTPS implementations require more CPU power to process the
messages and are thus slowed down when the CPU utilization
is at 100 percent.

The results of the RTT during high network load show that

protocols using TCP (OPC UA Client/Server, MQTT) were
less influenced by a network interface running at maximum
capacity than protocols using UDP (OPC UA Pub/Sub, DDS,
ROS). All protocols show a slowdown of more than 400 µs.

The combined view in Fig. 1d and 1f shows the direct
comparison of the protocols, including a simple TCP and UDP
echo/ACK server implemented in C. It can be seen, that the
raw UDP implementation is the fastest way for exchanging
messages of small sizes, which are either acknowledged or
echoed back, closely followed by TCP, which has a better
performance for bigger message sizes. Excluding the results
of TCP and UDP, the open62541 OPC UA Pub/Sub implemen-
tation described in [15] is the fastest middleware for almost all
package sizes independent of the mode. eProsima Fast RTPS
is in second place, followed by OPC UA Client/Server, ROS,
and then MQTT. The diagrams also show that MQTT has the
highest number of outliers.

To investigate further which components of a middleware
have the highest impact on the RTT, we also ran tests using
the OpenDDS middleware. It features a zero-copy or memory
allocation mode for sending back the echo message. This has
shown that the way messages are read from the socket and then
forwarded to the user code has a high impact on the RTT, since
memory allocations are an expensive operation. Additionally,
OpenDDS was significantly slower than FastRTPS, which
shows that the serialization of messages may also lead to
higher RTT. The eProsima Fast RTPS and open62541 OPC UA
implementations pass constant data pointers to the user code,
whereas MQTT and ROS use multiple copy operations to
duplicate the data.

Figure 1h shows the RTT for sequential requests, where
the client waited a random amount of seconds (between zero
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and three) to send one single request with 4 bytes of payload
and waited for the acknowledgment messages. This test was
repeated 100 times. These results indicate, that DDS needs
more time to reactivate from the resting state compared to
other middleware protocols. For OPC UA, MQTT, and ROS,
the values are similar to the ones in Fig. 1d, which shows the
ACK RTT.

As a last test, we also evaluated the case where 500 in-
stances are running on the same host and the instances need to
exchange data between each other, as described in Section V.
For OPC UA Client/Server, we simply started 500 OPC UA
servers on the same host, using different endpoint ports. The
client from the remote host sends 10 simultaneous write
requests with a payload of 10 240 bytes and every server
forwards this request to the next server in line, resulting in
50 write requests per package, multiplied by 10 simultaneous
streams. The last 10 servers then return the value to the
client, which measures the overall time. For OPC UA Pub/Sub,
MQTT, ROS, and DDS, the same procedure is achieved
by using topics with different names and starting multiple
processes. One of the biggest issues for this test was the
resource usage of ROS and DDS. Starting 500 ROS forces
the CPU to work at full capacity and filled 60 GB of the
total 64 GB of installed RAM on that host. Using Fast RTPS,
we were not even able to start more than 100 nodes, as the
CPU was already working at full capacity and the DDS nodes
were not able to discover any topics after some time. We
then used the OpenDDS implementation, which also supports
shared memory, to conduct the tests. The high load is the
result of the discovery process in ROS and DDS: as explained
in Section IV, these two protocols produce a higher number of
packages with more data compared to OPC UA and MQTT.

This test shows that the open62541 OPC UA Client/Server
implementation is still the fastest protocol and is even faster
than the DDS shared memory implementation. The reason for
this huge performance gap to MQTT and ROS is the direct
TCP connection between nodes in OPC UA, whereas MQTT
uses stateless UDP connections. In [12], the authors also state
that for small data, shared memory does not improve the
latency compared to local loopback. ROS is slowed down by
the high CPU load it produces on the host.

VII. CONCLUSION

In this paper, we gave an overview on the different fea-
tures of OPC UA, ROS, DDS, and MQTT and compared
their performance in several benchmarks. OPC UA has its
strength in the semantic modeling of information. ROS is
mainly used on robots for research purposes and provides
many different pre-implemented feature packages. DDS has an
extensive set of Quality-of-Service settings, whereas MQTT
mainly focuses on a lightweight publish/subscribe protocol.
The performance comparison of the protocol implementations
shows that open62541 for OPC UA and eProsima FastRTPS
for DDS deliver high performance, whereas the MQTT and
ROS implementations show a significant slowdown in the RTT
of packages sent to the server.

Future experiments will evaluate the performance of the pro-
tocols on bad network connections, for example on a wireless
network. Additionally, we will evaluate the performance of
different implementations of the same protocol.
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