
Cognitive architectures

Stefan Profanter

December 6, 2012

Hauptseminar Human-Robot Interaction

Wintersemester 2012/13

Technische Universität München

Lehrstuhl für Echtzeitsysteme und Robotik

i



Contents

1 Why do we need cognitive architectures? 1

2 Additional References 1

3 Theory 2
3.1 Different paradigms of cognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3.1.1 Cognitivist Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.1.2 Emergent Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.1.3 Hybrid Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4 Examples & Applications 7
4.1 The Soar Cognitive Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.2 Adaptive Control of Thought-Rational (ACT-R) . . . . . . . . . . . . . . . . . . . . . 9
4.3 Autonomous Agent Robotics (AARs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.4 Kismet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5 Conclusion & Outlook 12

ii



1 Why do we need cognitive architectures?

A cognitive architecture is a blueprint for an intelligent agent. This blueprint consists of its repre-
sentational assumptions, the characteristics of its memories, and the processes that operate on those
memories. It is a model which tries to describe formally mental or cognitive capabilities (most often
like a human) to implement those on a computer. Those models must be defined formally enough so
that they can be a basis of a computer program. Here not only the behavior but also the structure of
the modelled system/capability is described.
The main field of research is the imitation of the cognition of animate being - especially humans -
including memory, speech, perception, problem solving, spiritual will or also attention.
Cognitive architectures can be seen as a restriction of artificial intelligence. Because in artificial intel-
ligence, agents can use - in contrary to cognitive architectures - also strategies, which aren’t used or
applied by humans or animate beings.

Cognitive architectures are mainly used to understand how the environment of the system might be
and how problems can be solved. Problem solving means, to find a way which goes from a predefined
start state into a predefined goal state.
Such cognitive architectures allow the system to act efficiently and autonomously, to adapt to new
situations and to improve itself. So cognitive systems exhibit effective behavior through perception,
action, deliberation, communication and through interaction with the environment. The main charac-
teristic of these systems is that they can act even in circumstances which weren’t planned or weren’t
available when the system was designed.

2 Additional References

The main topics of this summary are explained in detail in “A Survey of Artificial Cognitive Systems:
Implications for the Autonomous Development of Mental Capabilities in Computational Agent” pub-
lished by David Vernon [VMS07, Ver12] on which this elaboration is based.

The Paper “The Past, Present, and Future of Cognitive Architectures” [TA10] gives you a quick
historical introduction to cognitive architectures, starting with general problem solvers (GPS, 1963)
trying to imitate the humans problem solving capability and explaining how GPS had influence on
future cognitive architectures or how it is successfully used in human-like warfare simulations. Taatgen
then describes some recent changes in cognitive modeling approaches, e.g. using neurons in neural
networks or mapping components of cognitive architectures onto regions of the human brain.
He also states that “current models have an almost infinite freedom in specifying the initial knowledge
and strategies of the model, allowing many different ways to model a single task”. So the current
problem is, that there are a lot of different cognitive architectures and models available. Taatgen says
that in the future, researchers will try to solve this problem by simplifying models and merging ideas
of different models.

In the paper by [DOP08] with the title ’Cognitive Architectures: Where do we go from here?’ you can
find an easy understandable introduction in the so called artificial general intelligence (AGI). This
paper is from the year 2008 and is designed as a critical survey of the state of the art in cognitive
architectures, e.g. SOAR, EPIC, ICARUS, ACT-R, ..., by this time.
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Duch also tries to define some base properties which a cognitive architecture should have and how
cognitive systems can be tested on how ’intelligent’ they are. He also gives some ideas for developers
and designers of cognitive architectures.

If you are interested in a more practical related reading about cognitive architectures you may find
[SMV07] interesting; This paper describes the iCub Cognitive Humanoid Robot, which is an open-
systems 53 degree of freedom, children sized robot. Here also the importance of humanoid embodiment
for cognitive architectures is discussed. It contains also a digression concerning iCub’s mechanical and
electronic specifications.

A more general and future related definition of cognitive computer systems gives Brachman in his
paper “Systems That Know What They’re Doing” [Bra02]. He states that cognitive systems should, in
addition to being able to reason, to learn from experience, to improve its performance with time, and
to respond intelligently to things it is never encountered before, would also be able to explain what it
is doing and why it is doing it.
This helps systems on finding unresolvable constraints with new tasks or deciding if they need more
information for solving a specific task.
Brachman additionally proposes to use three types of processes operating most likely parallel to build
a cognitive architecture. The reactive processes; these are things we do without thinking, e.g. simple
reflexes or driving a car (can also contain newly learned “reflexes”). The deliberative processes, which
make up the bulk of what we mean by the word “thinking”, which decides for example, in which
direction to go next, or planning a vacation. The third process - reflective - is the most important
one and gives the system the ability to stop basic reasoning on a problem and step back and use an
alternative approach.

On the page http://cogarch.org you get a Wikipedia-Style overview on general information and
features of cognitive architectures and you will also find information on a lot of different individual
architectures.
You can also find detailed information on different cognitive architectures in Table 1 and the corre-
sponding cited papers.

3 Theory

David Vernon, a professor at the Technische Universität München, defines a cognitive system as an
“autonomous system that can perceive its environment, learn from experience, anticipate the outcome
of events, act to pursue goals, and adapt to changing circumstances.” [Ver12].
A cognitive architecture is a blueprint for intelligent agents. It proposes computational processes that
act, most often, like a person, or acts intelligent under some definition. The term architecture implies
that not only the behavior, but also the structural properties should be modelled.
Cognitive architectures can be characterized by the following properties:

• Cognition is implemented as a whole (Unified theory of cognition), not just small aspects of
cognitive behavior.
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• The architecture often tries to reproduce the time constraints (reaction within a specific amount
of time) of the modelled system.

• The system should be robust in the face of error, the unexpected and the unknown.

• A cognitive system should be able to learn.

• The system shouldn’t depend on parameter tuning, it should be parameter-free (in contrast to
Artificial neural networks).

The first one who mentioned cognitive architectures in connection with artificial intelligence was Allen
Newell in the year 1990 where he describes the unified theory of cognition (UTC) [New90]. UTC
describes how an intelligent system reacts to stimuli from the environment, how goal-directed behavior
is exhibited, how goals are acquired rationally, how the knowledge is represented and how it can be
expanded by learning.
The inspiration for such architectures can be traced back to Alan Turing (1950). Turing thought that
the main barriers for computers of that time is speed and memory capacity. But history has shown,
that the puzzle of human intelligence, creativity, and ingenuity is much more complex.

3.1 Different paradigms of cognition

There are two main approaches to model cognitive architectures: the cognitivist approach based on
symbolic information processing and the emergent systems approach which groups together connec-
tionist, dynamical and enactive systems [VMS07].
In the following, there is are mentioned different references to symbols. A symbol in the sense of
artificial intelligence is a representation to describe concepts of different perception- and cognitive
processes. Symbols are used when it is too complex to describe such concepts with numbers, bacause
symbols use characters and words for description.

Cognitivist and emergent approaches can be compared on twelve distinct characteristics:

• Computational Operation
Cognitivist Emergent

use rule base manipulation of symbol tokens,
typically in a sequential manner

exploit processes of self-organization, self-
production, self-maintenance, and self-
development through a network of dis-
tributed, concurrent interacting components

• Representational Framework
Cognitivist Emergent

use patterns of symbol tokens, designed by
human, that refer to events in the external
world

global system states are encoded in the
dynamic organization of the system’s dis-
tributed network of components

• Semantic Grounding
Cognitivist Emergent

Symbolic representations are grounded
through percept-symbol identification by ei-
ther the designer or by learned association
and can be interpreted directly by human

representations ground on autonomy-
preserving anticipatory and adaptive skill
construction. These representations are
inaccessible for direct human interpretation
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• Temporal Constraints
Cognitivist Emergent

not necessarily entrained by events in the
external world

operate synchronously in real-time with
events in their environment

• Inter-Agent Epistemology
Cognitivist Emergent

epistemology can be shared between agents
because of their common view of reality

epistemology is the subjective outcome of
a history of shared consensual experiences
among phylogenetically compatible agents

• Embodiment
Cognitivist Emergent

cognition is independent of the physical
platform in which it is implemented

intrinsically embodied, the physical instan-
tiation plays a direct constitutive role in the
cognitive process

• Perception
Cognitivist Emergent

perception provides an interface between the
external world and the symbolic representa-
tion of that world

perception is a change in system state in
response to environmental perturbations in
order to maintain stability

• Action
Cognitivist Emergent

actions are causal consequences of symbolic
processing of internal representations

actions are perturbations of the environ-
ment by the system

• Anticipation
Cognitivist Emergent

anticipation typically takes the form of plan-
ning using some form of procedural or prob-
abilistic reasoning

anticipation requires the system to visit
a number of states in its self-constructed
perception-action state space without com-
miting to the associated actions

• Adaptation
Cognitivist Emergent

adaptation usually implies the acquisition of
new knowledge

entails a structural alteration or reorganiza-
tion to effect a new set of dynamics

• Motivation
Cognitivist Emergent

impinge on perception, action and adaption
to resolve an impasse

enlarge the space of interaction

• Relevance of Autonomy
Cognitivist Emergent

Autonomy is not necessarily implied autonomy is crucial since cognition is the
process whereby an autonomous system be-
comes viable and effective
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3.1.1 Cognitivist Approach

In 1956 the science of cognition formed the term cognitivism. Cognitivism describes cognition based on
computations defined over internal symbolic representations (which is the knowledge of the system).
The information about the world is abstracted by perception, represented using some appropriate
symbolic data-structure, reasoned about, and then used to plan and act in the world. The approach
has also been labelled by many as the information processing (or symbol manipulation) approach to
cognition. Cognitivism has been the predominant approach and to date it is still prevalent.
In cognitivist approaches, the symbolic representations are the descriptive product of a human designer.
Therefore they can be accessed (extracted and embedded) directly and understood or interpreted by
humans. This fact is often seen as a limitation factor of cognitivist systems: the representations
are programmer dependent and constrain the system to an idealized description dependent on the
cognitive requirements of human activity. It is possible to extend the predesigned knowledge with
machine learning algorithms, probabilistic modeling or other techniques to deal with the uncertain,
time-varying and incomplete nature of sensor data used by the representational framework. However
this wouldn’t eliminate the introduced limitation by the designers description.
In the cognitivist paradigm, the focus in a cognitive architecture is on the aspects of cognition that
are constant over time and that are relatively independent of the task.
Therefore the strength of such systems is to capture statistical regularities for example in training data.

The main problems of cognitivist systems are the symbol grounding (symbols designed by human)
and finding significant properties in a large dataset and then generalize to accommodate new data.
Therefore such models have difficulties handling complex, noisy and dynamic environments. It is also
very difficult to gather higher order capabilities such as creativity or learning. So these models are
best suited for well defined problem domains.

3.1.2 Emergent Approaches

In Emergent approach, cognition is the process of adapting to the environment. Such systems does
so through a process of self-organization through which it reacts on the environment in real-time to
maintain its operability. In other words, the ultimate goal of an emergent cognitive system is to
maintain its own autonomy. This process of making sense of its environmental interactions is one of
the foundations of the enactive approach to cognition.
The cognitive agent constructs its internally represented reality (its world) as a result of its operation,
its experiences in that world. Therefore for emergent systems, in contrary to cognitivist models, per-
ception is the acquisition of sensor data. It isn’t a process whereby the environment is abstracted and
represented in a more or less isomorphic manner.
In contrast to the cognitivist approach, many emergent approaches assert that the primary model for
cognitive learning is anticipative skill construction rather than knowledge acquisition.
Emergent systems have also the possibility to get familiar with and learn how to control the body it
is embodied in. So the designer doesn’t have to model each body-characteristic into the system.

Due to the mutual specification and co-development of emergent systems with the environment, it
is very difficult for us humans to model such systems. Til now researchers only provided general
modeling frameworks but no specific, fully defined model of cognition.
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Connectionist Models Connectionist systems use statistical properties, rather than logical rules to
process information to achieve effective behavior. Therefore such systems best capture the
statistical regularities in training data. A prominent example for a connectionist model is the
unsupervised neural training algorithm by Hebb (1949). Later on, connectionist systems were
used to retrieve specific and general information from stored knowledge about specific instances.
One of the key features of connectionist models is that the system becomes inseparable from
its history of transformations and the task defined for the system. Furthermore connectionist
models don’t use a symbol representation of the knowledge, instead “meaning” is a description
attributed by an outside agent.
In 1976 Grossberg introduced the Adaptive Resonance Theory (ART) [Gro76] which tries to
imitate the brains information processing. ART describes neural network models used for pattern
classification and prediction.
Nearly at the same time, in 1982, Kohonen’s self-organizing maps (SOMs) were first mentioned
[Koh82]. A SOM is a type of artificial neural network that is trained to produce a low-dimensional
discretized representation of the input space.
Another popular representative of Connectionist systems is the Hopfield net [Hop82]. Hopfield
nets serve as an associative memory and are for example widely used for pattern completion.

Dynamical Systems Models A dynamical system is a system of a large number of interacting compo-
nents with a large number of degrees of freedom which needs external sources of energy to main-
tain structure or function. But only a small number of the system’s degrees of freedom (DOF)
contribute to its behavior. These DOF are called order parameters. Therefore dynamical systems
are used to characterize the behavior of a high-dimensional system with a low-dimensional model
which is one of the features that distinguishes dynamical systems from connectionist systems.
In contrary to connectionist systems which describe the dynamics in a very high-dimensional
space, dynamical models describe the dynamics in a low-dimensional space where a small num-
ber of state variables capture the behavior of the system as a whole.

Enactive Systems Models Enactive systems take the emergent paradigm even further: properties of
a cognitive entity are co-determined by the entity as it interacts with the environment in which it
is embedded. Thus, nothing is pre given and hence there is no need for symbolic representations.
The goal of enactive systems research is the complete treatment of the nature and development
of autonomous, cognitive, social systems. The system builds its own understanding as it develops
a cognitive understanding by co-determined exploratory learning. An enactive system generates
its own models of how the world works and that the purpose of these models is to preserve the
system’s autonomy.
Emergent systems follow the principle that the perception of its body and the dimensionality
and geometry of the space in which it is embedded can be deduced (learned or discovered) by
the system from an analysis of the dependencies between motoric commands and consequent
sensory data, without any knowledge or reference to an external model of the world or the
physical structure of the organism [PON02][PONC03].

3.1.3 Hybrid Models

Hybrid models combine aspects of the emergent systems and cognitivist systems. The main idea
behind hybrid models is to avoid explicit programmer-based knowledge in the creation of artificially
intelligent systems and to use perception-action behaviors rather than the perceptual abstraction of
representations. Typically, hybrid systems exploit symbolic knowledge to represent the agent’s world
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and logical rule-based systems to reason about this knowledge in order to achieve goals and select
actions, while at the same time using emergent models of perception and action to explore the world
and construct this knowledge. Thus, hybrid systems still use cognitivist representations and represen-
tational invariances but they are constructed by the system itself as it interacts with and explores the
world rather than through a priori specification or programming.
Out of this, objects should be represented as invariant combinations of precepts and responses, where
the object properties need to be learned through object manipulation. Thus the system’s ability to
interpret unknown objects is dependent on its ability to flexibly interact with it. This implicates that
the internal representation of objects don’t have any meaningful semantic meaning for humans. For
object manipulation, the system must also be embodied in some kind (at least during the learning
process).
The aim for developing such systems is, that they learn tasks which they weren’t explicitly designed
for.

4 Examples & Applications

A cognitive architecture defines how memories are stored and the processes that operate on those
memories. In terms of cognitive models it defines the formalisms for knowledge representations and
the learning mechanisms that acquire it.
For emergent systems it is much more complicated to predefine an exact structure because the designer
doesn’t know exactly what the system will learn in the future and how this knowledge is connected.
Therefore architectures for emergent systems represent an initial point of departure for the base cog-
nitive system and they provide the basis and mechanism for tis subsequent autonomous development,
a development that may impact directly on the architecture itself.

Cognitive architectures can be used for a lot of different use cases. A cognitivist system, for example,
has been used to develop a cognitive vision system which interprets a video sequence of traffic behavior
and then generates a natural language description of the observed environment [Nag04].
Emergent connectionist models can be used, for example, to learn hand-eye coordination with Kohonen
neural network [JV94, Mel88] or much simpler for face detection. As another example, a biologically
inspired hybrid model is used in [MF03] for object segmentation, recognition, and localization capa-
biliteis without any prior knowledge through exploratory reaching and simple manipulation.

In the following paragraphs we will review some of the most important cognitive architectures of all
three types: cognitivist, emergent and hybrid. For additional examples of cognitive architectures see
Table 1 and the corresponding referenced resources for further reading.

4.1 The Soar Cognitive Architecture

The Soar (State, Operator and Result) system operates in a cyclic manner, with a production cycle
and a decision cycle. In the first cycle, all productions that match the contents of declarative (working)
memory fire. A production rule can also be seen as a current state, e.g. the current position in a
maze. A production that fire (movement in the maze) may alter the current declarative memory (new
position in maze) and cause other productions to fire. This loop is repeated until no more productions
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Cognitivist Emergent Hybrid

Soar [Lai12, Ros93, JJP96] AAR [Bro85] HUMANOID [BMS+05]
EPIC [AM97] Global Workspace [Sha05] Cerebus [Hor01a, Hor01b]
ACT-R [And96] I-C SDAL [CH00] Cog: Theory of Mind [RCM+99]
ICARUS [LC06] SASE [Juy04] Kismet [Bre00, Bre03]
ADAPT [DDD04] Darwin [KE08]

Table 1: Cognitive architecture examples. The emphasized ones are presented in Subsection 4. For additional
information see given references. (Source: [VMS07])

fire. At this point the decision cycle starts in which a single action from several possible actions is
selected, based on the action’s preferences.
If the cycle reaches an impasse, i.e., no action is available, a new state in a new problem state is set
up. This process is called subgoaling, where the new goal resolves the impasse. Additionally a new
production rule is created which summarizes the processing that occurred in solving the sub goal.
The subgoaling process is the only form of learning that occurs in Soar.

So the main properties of a Soar architecture are (see also Figure 1):

• Problem solving is realized as a search in problem spaces.

• Permanent knowledge is represented with production rules in production (long-term) memory.
This knowledge may be in procedural, semantic and episodic form.

• Temporary knowledge (perception or previous results) is represented through objects stored in
declarative (working) memory.

• A decision procedure decides what to do with the current knowledge (create new knowledge or
do a specific action).

• New goals are created only if there is an impasse.

Body 
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Perception Action 

Procedural

Long-Term Memories 

Semantic 

D
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Working Memory 

P
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Figure 1: Memory structures in Soar (Source: [JJP06])
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production rule 1:
sp { propose*hello-world propose to use operator ’hello-world’
(state <s> ^type state) condition: if a state <s> exists in declarative directory,

then fire rule (execute following actions)
--> end of condition block, actions follow
(<s> ^operator <o> +) action 1: propose to use operator <o> on current state
(<o> ^name hello-world)} action 2: give <o> the name ’hello-world’

production rule 2:
sp { apply*hello-world Apply this rule if operator ’hello-world’ should be executed
(state <s> ^operator <o>) condition 1: an operator <o> has been selected
(<o> ^name hello-world) condition 2: <o> has the name ’hello-world’
--> end of condition block, actions follow
(write |Hello World|) action 1: print ’Hello World’ to console
(halt) } action 2: stop problem solving process

Table 2: Hello world program written in Soar programming language

In Table 2 you can see an example program written in Soar. When loading this program, the two
production rules are loaded into the production memory. Running an agent on this knowledge it
produces ’Hello World’.
To run this program you need to download the Soar Suite from http://sitemaker.umich.edu/soar/

home.

4.2 Adaptive Control of Thought-Rational (ACT-R)

The ACT-R cognitive architecture focuses on the modular decomposition of cognition and offers a
theory of how these modules are integrated to produce coherent cognition. Each module processes a
different kind of information (see Figure 2).
The vision module determines objects, the manual module is responsible for controlling the body (e.g.
hands), the declarative module for retrieving information from long-term memory and a goal module
for keeping track of the internal state when solving a problem. The fifth module, the production
system in the center, coordinates the operation of the other four modules by using the module buffers
to exchange information.
ACT-R operates in a cyclic manner where on each cycle the production system requests information
from the modules by supplying constraints to it. The module places then a chunk which satisfies
the given constraints in its buffer. The information of the buffers is then read, interpreted and new
information may be requested or stored in those buffers.

Compared with Soar, this system has two bottlenecks:

• A buffer can only hold a single unit of knowledge (called ’chunk’). Therefore only one memory
can be retrieved the same time.

• Only one production can fire in a cycle, compared with Soar where multiple productions could
fire the same time.
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Declarative knowledge effectively encodes things in the environment, while procedural knowledge en-
codes observed transformations. A central feature of the ACT-R cognitive architecture is that these
two types of knowledge are tuned in specific application by encoding the statistics of knowledge. Thus,
ACT-R learns sub symbolic information by adjusting or tuning the knowledge parameters. This sub-
symbolic learning distinguishes ACT-R from the symbolic (production-rule) learning of Soar.
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Figure 2: The organization of information in ACT-R 5.0. Information in the buffers associated with modules
is responded to and changed by production rules. The names in parentheses indicate the corresponding part of
the human brain. DLPFC = dorsolateral prefrontal cortex; VLPFC = ventrolateral prefrontal cortex. (Source:
[ABB+04])

The Navy Center for Applied Research in Artificial Intelligence (NCARAI) in Washington DC per-
forms state-of-the-art research on cognitive robotics and other AI relevant topics.
They are using ACT-R/E as a cognitive basis for their robot Octavia. ACT-R/E is built upon ACT-R
with additional visual, auditory, motor and spatial modules to interact with the world 1. In the video
“Robotic Secrets Revealed, Episode 002” (on their videos page 2) they show a very advanced example
of human robot interaction:
In the first scene, the robot Octavia is presented with some items to identify. Tony, their human
trainer, then leaves the room with the comment that they will do movement tests next, but have to
wait for Laura. Then Laura comes in, says that there is a problem with other robots so the movement
test can’t take place and leaves the room. When Tony returns and wants to do movement tests,

1http://www.nrl.navy.mil/aic/iss/aas/CognitiveRobots.php
2http://www.nrl.navy.mil/aic/iss/aas/CognitiveRobotsVideos.php
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Octavia is confused and tells Tony what it learned from Laura.
According to the explanation after the video, ACT-R/E was able to understand the statements given
by human, learn from them and communicate the new facts to human. Additionally ACT-R/E allows
Octavia to act and behave like human beings.

4.3 Autonomous Agent Robotics (AARs)

The main idea behind AARs and behavior-based systems is to avoid a decomposition of the system
into functional components by using subsumption. Therefore this type or architectures is also often
called ’Subsumption architecture’ 3.
Subsumption means that at the bottom are simple whole systems that can act effectively in simple
circumstances, layers of more sophisticated systems are added incrementally, each layer subsuming the
layers beneath it.
This allows to break complicated intelligent behaviors into many simple behavior modules. The simple
modules are organized into layers, each layer implementing a particular goal of the robot. This means
for instance that a decision to move made by the Explore layer (see Figure 3) must take into account
the decision of the ’Follow Light’ layer directly below it, as well as the lowest layer labeled Avoid
Obstacle.
Each layer can access all of the sensor data and generates commands for the actuators. And each
separate tasks can suppress (or overrule) inputs or inhibit outputs. This way, the lowest layers can
work like fast-adapting mechanisms (reflexes), while the higher layers work to achieve the overall goal.

Avoid

Obstacle

Avoid Loud

Noise

Follow

Light

Explore

Light

Sensors

Audio

Sensors

Obstacle

Sensors

S

S

S
Motor

Drivers

Figure 3: Subsumption architecture. At the bottom is the lowest layer. Incrementally added layers subsume the
layer beneath it. (Source: http: // www. beam-wiki. org )

4.4 Kismet

Kismet is a robotic head (see Figure 4) which can express a lot of different human like emotions. It
has 21 degrees of freedom (DOF) for controlling the head orientation (3 DOF), the gaze (3 DOF)
and its facial features (15 DOF). It additionally has a wide-angle binocular vision system and two
microphones. It was designed to engage people in natural expressive face-to-face interaction.

3http://ai.eecs.umich.edu/cogarch3/Brooks/Brooks.html
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Figure 4: The kismet robot head. (Source: http: // programm. ard. de )

Kismet has two types of motivations: drives and emotions. The drive subsystem regulates Kismet’s
social, stimulation and fatigue related needs. Like in an animal that has a level of hunger, each drive
becomes more intense until it is satiated. These drives affect Kismet’s emotion system, which contains
anger, disgust, fear, joy, sorrow, surprise, boredom, interest, and calm. These emotional states can
activate behaviors. For example, the fear emotion can induce the escape behavior.

Kismet’s cognitive architecture consists of five modules: a perceptual system, an emotion system, a
behavior system, a drive system and a motor system (see Figure 5).

External events, such as visual and auditory stimuli, are sensed by the robot and are filtered by a
number of feature extractors (e.g. color, motion, pitch, etc.). This information together with affective
input from the emotion system, input from the drive system and the behavior system, these features
are bound by releaser processes that encode the robot’s current set of beliefs about the internal and
external state of the robot and its relation to the world. When the activation level of a releaser exceeds
a given threshold (based on the perceptual, affective, drive, and behavioral inputs) it is output to the
emotion system for appraisal.
The appraisal process tags the releaser output with pre-specified affective information on their arousal
(how much it stimulates the system), valence (how much it is favored), and stance (how approachable
it is). These are then filtered by ’emotion elicitors’ to map each AVS (arousal, valence, stance) triple
onto the individual emotions. A single emotion is then selected by a winner-take-all arbitration pro-
cess, and output to the behavior system and the motor system to evoke the appropriate expression
and posture.

Kismet is a hybrid system because it uses cognitivist rule-based schemas to determine the most suitable
behavior an emotion, but allows the system behavior to emerge from the dynamic interaction between
its subsystems.

5 Conclusion & Outlook

The presented types of models (cognitive, emergent, hybrid) have their own strengths and weaknesses,
their proponents and critics, and they stand at different stages of scientific maturity. The arguments in
favor of dynamical and enactive systems are compelling but current capabilities of cognitive systems
are actually more advanced. Emergent systems, for example, have their strength in capturing the
context-specificity of human performance and handling many pieces of low-level information simulta-
neously. But their main shortcoming is the difficulty in realizing higher-order cognitive functions.
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Figure 5: An overview of Kismet’s cognitive architecture. (Source: [Bre03])

This suggests that hybrid approaches (synthesis of cognitivist and emergent approaches) may be the
way forward, because they offer the best of both worlds - the adaptability and flexibility of emergent
systems and the advanced starting point of cognitivist systems.

Designing a cognitive system and defining its architecture is a challenging discipline with several ques-
tions: Which physical embodiment (cognitivist systems don’t depend on it, emergent systems, by
definition, require embodiment) and what degree of autonomy is required? Which symbol-structure
is needed for the knowledge representation? What is the goal specification? The given questions are
only a rough overview, if you go more in detail, there will arise a lot more questions.

We have shown this freedom in design by presenting some examples for cognitive architectures, which
differ strongly. Some are under active scientific development, others are popular and useful, but
constraints are not well-presented.

Developing cognitive architectures, which behave similar to humans is a complex, not yet solved task
which requires different approaches from all sides.
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DARPA (Defense Advanced Research Projects Agency), for example, tried to launch the “Biologically
inspired cognitive architectures” project in 2005 which was designed to create the next generation of
Cognitive architectures that could be used to create embodied computational architectures of human
intelligence. But the implementation of the previously designed ideas was too ambitious for this time
and the project was therefore cancelled in 2007.
This DARPA project shows that it is worth to search for new approaches, even if they are ahead of
the times.

Brachman presents the problem that machines don’t know what they are doing, in a nice way [Bra02]:

How many times have you watched something happen on your PC and just wished you
could ask the stupid thing what it was doing and why it was doing it? How often have
you wished that a system wouldn’t simply remake the same mistake that it made the last
time, but instead would learn by itself-or at least allow you to teach it how to avoid the
problem? Despite our temptation to anthropomorphize and say that a system that is just
sitting there doing nothing visible is “thinking,” we all know that it’s not. Indeed, if today’s
systems were people, we would say that they were totally clueless. The sad part is that
even if my PC had a clue, it wouldn’t know what to do with it.

Therefore, as already mentioned in Section 2, one of the new approaches in cognitive architectures
will be, that cognitive systems are able to explain what they are doing and why they are doing it this
specific way. Consequently, a cognitive system would be able to view a problem in several different
ways and to look at different alternative ways of tackling it.

Beneath the design of intelligent systems we will also need a method (similar to the Robot@Home
challenge) to test the system’s intelligence and determine its cognitive abilities (e.g. ’clean up the
house’, ’do what this animal can do’, ... 4).
This testing and benchmarking is necessary to compare different architectures and to determine their
completeness and performance.

[DOP08] mentioned already, that so far, cognitive architectures are used in very few real-world ap-
plications. They are mainly used in research and in small demo projects. So the next step with
respect to real world applications, will be to extend those small demos to large scale applications or
implementing cognitive abilities in everyday items, e.g. the current smartphones boom would be a
great opportunity, to reach a mass of people and make cognitive architectures even more interesting
for developers.
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