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C
urrent market demands require an increasingly 
agile production environment throughout many 
manufacturing branches. Traditional automation 
systems and industrial robots, on the other hand, 
are often too inflexible to provide an economically 

viable business case for companies with rapidly changing 
products. The introduction of cognitive abilities into robotic 
and automation systems is, therefore, a necessary step toward 
lean changeover and seamless human–robot collaboration. 

In this article, we introduce the European Union (EU)-
funded research project SMErobotics (http://www.smerobotics 
.org/), which focuses on facilitating the use of robot systems 
in small and medium-sized enterprises (SMEs). We analyze 
open challenges for this target audience and develop multi-
ple efficient technologies to address related issues. Real-
world demonstrators of several end users and from multiple 
application domains show the impact these smart robots 
can have on SMEs. This article intends to give a broad over-
view of the research conducted in SMErobotics. Specific 
details of individual topics are provided through references 
to our previous publications.
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Robots in SMEs
SMEs, i.e., companies with fewer than 250 employees, form 
the backbone of European industries, with over 1 million 
SME-level enterprises in the manufacturing domain [1]. They 
represent more than 99% of all businesses in the EU. In the 
past five years, they have created approximately 85% of all 
new jobs and provided two-thirds of total private-sector 
employment. The European Commission considers SMEs 
and entrepreneurship as key factors for ensuring economic 
growth, innovation, job creation, and social integration in the 
EU. It promotes entrepreneurship and supports SMEs 
through the Programme for the Competitiveness of Small 
and Medium-Sized Enterprises, which started in 2014 and 
will run until 2020, with a planned budget of €2.3 billion.

The International Federation of Robotics estimates that, 
for the major robot markets (apart from China), i.e., Japan, 
the United States, South Korea, and Germany [2], there are, 
on average, six robots per 10,000 employees in manufactur-
ing SMEs. The average for all manufacturing industries is 
246, with an average of 1,225 for the automotive sector [3]. 
These numbers indicate the huge market potential for 
industrial robots in manufacturing SMEs, which has not yet 
been adequately addressed. The products of manufacturing 
SMEs typically are very diverse. They employ a multitude of 
different technologies (e.g., welding) and different kinds of 
shape forming (milling, grinding, bending, and so on) and 
industrial assembly. But they share a common secret: the 
success of SMEs in Europe is  based significantly on versatile 
production, close customer relationships, and the resulting 
ability to quickly react to changing demands in the market, 
as well as the ability to adapt to indi-
vidual customer requests. 

SMEs in contract manufacturing are 
characterized by frequent product 
changes and a broad range of product 
variants. Today’s industrial robots have 
been designed for a different scenario: 
large-scale, high-throughput manufac-
turing systems that produce one specif-
ic product (or a small set of quite 
similar variants) at very high quantities 
and with constant quality.

This discrepancy in manufacturing 
requirements hinders the introduction 
of industrial robots into manufactur-
ing SMEs. Matters are complicated by 
the fact that SME production, due to 
the need for flexibility and versatili-
ty, is less structured than, e.g., a fully 
automated car manufacturing line. 
Another complication is that small 
enterprises (with fewer than 30 em -
ployees) often lack a dedicated IT 
department that is able to maintain 
robotic workcells. Instead, they have a 
very lean business administration and 

a workforce almost exclusively composed of highly skilled 
craftsmen and product engineers. Therefore, SMEs require 
highly versatile robots that are able to work symbiotically with 
skilled human workers. Robots must learn from their own 
experiences and benefit 
from their human cowork-
er’s domain knowledge. 
They must be manageable 
without profound exper-
tise in robotics (Figure 1).

Challenges and 
Requirements
The Danish Technological 
Institute, a member of the 
SMErobotics consortium, 
interviewed 825 chief 
executive officers (CEOs) of manufacturing SMEs during 
2015 and found that 89% of Danish companies with fewer 
than 34 employees have basically no automation at all [5]. 
This is despite Denmark having the world’s fifth-highest robot 
density in the manufacturing domain [2]. Fifty-six percent of 
the CEOs felt that robots could not be used in their context, 
and 41% felt that their production volume was too low to 
warrant automation.

In another study of 846 manufacturing companies, the 
Danish Society of Engineers revealed that the major reasons 
for investing in automation were lower production costs 
(84%), fewer errors in the product (76%), and less waste 
(68%) [6]. The main barriers to automation were considered 

Figure 1. Automating complex manufacturing tasks necessitates managing the required 
technologies and associated costs. Uncertainties, e.g., deviations in the geometries of the 
work pieces or a drift in process parameters, counteract these management efforts. To cope 
with such issues, cognition and learning strategies are required on the robot side and the 
human side. Human operators need support through suitable software tools and wizards.
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to be lack of time to obtain investment finance and imple-
ment changes in production processes and lack of knowledge 
and technical expertise among both managers and employees. 
A more considerate analysis of the study suggests that the 
main challenges preventing the use of industrial robots in 
SME manufacturing include the following:
1)  Current robot programming techniques are not suitable for 

frequent changes of often highly customized products 
manufactured in small batches.

2)  Tool-centered manufacturing processes require investment 
in robot-suitable tool replacements.

3)  Classical robot cells with fences take up more space than 
comparable manual workspaces.

4)  Formalizing implicit production knowledge into engineer-
ing specifications or robot programs is a difficult task.

5)  Operating industrial robots is complex and requires expert 
knowledge in robotics.

6)  Decision makers in SMEs lack expertise in robotics: they 
cannot properly assess the capabilities of robot systems or 
predict associated costs.
These findings are echoed in the euRobotics Multi- 

Annual Roadmap (MAR) [7]. The euRobotics MAR is a joint 
document created and continuously updated by the European 
robotics industry and various research organizations. It states 
that the main requirements of SMEs include the need to 

design systems that are intuitive to use and cost-effective at 
low lot sizes. This means that robot systems must be easily 
adaptable to changes in products or processes without the 
need to rely on extensively trained employees. As the total 
cost of ownership for an industrial robot is dominated by 
operational costs, e.g., for training of employees or for exter-
nal programmers (Figure 2), such robot systems can help to 
effectively reduce overall costs.

SMErobotics Solutions
Overcoming the economic and technological challenges 
requires a new set of enhanced robot technologies that focus on 
intuitive human–robot interaction (HRI) and robust automatic 
operation. In the SMErobotics initiative’s approach, HRI and 
robustness complement each other to form a cognitive robot 
system that addresses the main challenges described in the pre-
vious section. Intuitive HRI interfaces can improve the reliabili-
ty of the system through human-in-the-loop decision making. 
The developed methods for uncertainty-aware robust automa-
tion not only enable the robot to perform more challenging 
tasks; they also increase the level of abstraction of decision 
making, further improving intuitive HRI.

These concepts are built on top of a set of underlying prin-
ciples, i.e., awareness of the environment and manufacturing 
context, knowledge- and sensor-based uncertainty handling, 
and efficient communication. The combination of these tech-
nologies within an integrated tool chain results in a cognitive 
system that complies with the needs of SMEs.

The following sections give a brief summary of the key 
approaches taken by the SMErobotics consortium and the 
technologies that have been developed by its members.

Investment Decision Support Tool
As observed during our user studies (see the “Challenges and 
Requirements” section), a major barrier that keeps SMEs 
from applying robotics technology is the uncertainty about 
costs. To mitigate this obstacle, we developed the web-based 
Robot Investment Tool (https://www.robotinvestment.eu/; 

Figure 3), which assumes that users do 
not know much about robots but do 
know their product: how much it 
weighs, how far it needs to be moved, 
and its overall shape and composition. 
Users know what kind of task they 
want to automate, e.g., arc welding, 
spot welding, grinding/finishing, 
painting, assembly, handling, packag-
ing, or palletizing. They are aware of 
how many employees are required for 
the current manual process and the 
associated costs. Given an educated 
guess about how many employees will 
be needed to manage the automated 
workstation and the expected change 
in productivity, the SME receives an 
assessment of its business case. The 

Figure 2. The distribution of total cost of ownership for a 
human–robot cooperation workcell [4]. Typical of such workcells 
is the dominance of operational costs in the overall balance 
compared with the actual investment.

Operation
63.4%

Investment 27.7%

Initiation 4.3%
Quality 3.0%

Maintenance and Repair 1.1%
Disposal 0.5%

Figure 3. An example calculation of the SMErobotics Robot Investment Tool for the 
assembly domain.
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minimum, maximum, and most likely payback times are 
automatically calculated to estimate the range of investment 
depending on the exact system chosen. The calculation is 
based on figures from a number of system integrators, who 
have entered prices for software, hardware, installation, and 
person hours. Additionally, system integrators provide infor-
mation about the robot type they recommend for various 
processes, reach, and payload.

The Robot Investment Tool enables SMEs to quickly and 
easily access knowledge about relevant robot installations and 
their estimated costs, while system integrators benefit from a 
higher visibility.

Seamless Integration of Production Knowledge
A key factor for cognitive automation solutions for SMEs 
is the integrated access to relevant data, such as process 
and product knowledge, hardware/software components 
and their capabilities, and workcell layout. In today’s 
SMEs, production knowledge is often not formalized in a 
way that is suitable for interpretation by cognitive systems. 
In contrast to this, SMErobotics provides solutions for 
encoding and reusing knowledge to support the human 
operator in programming and handling robot systems.

Modeling Hardware/Software Components
Due to advances in sensor and tool technologies together 
with decreasing costs, more devices are constantly being 
added to robotic workcells, both to improve the manufactur-
ing process through sensor-based adaptation and to facilitate 
easier programming of robots. To achieve this in an efficient 
way, an automatic or semiautomatic reconfiguration of the 
system is required.

Augmenting hardware and software components with 
semantic descriptions of their interfaces and functionalities 
enables self-describing systems. Connected devices can be 
automatically detected, and the resulting set of capabilities can 
be derived whenever a new component is added or removed. 
A model-based approach with a loose coupling of compo-
nents and a semantic description of these components 
increases interoperability; i.e., it minimizes the required effort 
when combining hardware and software components from 
different suppliers.

Product–Process–Resource Technology Model
We have developed a model-based architecture for SME-suit-
able production systems that extends the well-known product–
process–resource modeling approach [8] with a technology 
model [9] (Figure 4) that provides specific knowledge about 
manufacturing technologies, e.g., the optimal orientation of a 
welding torch relative to a work piece or parameters such as the 
typical voltage or wire feed speed for the given materials. In 
SMErobotics, these models are either serialized to Automation-
ML [9] for higher compatibility with existing automation solu-
tions or represented in a semantic description language (see the 
following section), which allows logical reasoning on the repre-
sented models to be conducted.

Explicit Semantics
Separating knowledge from program code is a key motivation 
and design principle in our work. We create detailed models 
with explicit semantics for common-sense knowledge as well 
as domain-specific knowledge via ontologies [10]. Our 
semantic description language is based on the Web Ontology 
Language (https://www.w3.org/TR/owl2-primer/). Generic 
ontologies about common-sense knowledge such as data 
types or units are already standardized, e.g., the QUDT 
ontologies (http://www.qudt.org/). Basic ontologies for 
the robotics domain have 
been defined [11], but 
they do not consider the 
specific requirements of 
SMEs and their individual 
domains. We aug ment 
our base ontologies with 
domain-specific knowl-
edge to create cognitive 
robotic systems special-
ized for a domain. Our 
semantic object model captures information such as mass, 
dimensions, materials, and boundary representation as well as 
their polygon triangulation [12].

Uncertainty-Aware Skills
In fully automated production lines, a major effort is required  
to minimize the location uncertainties of robots, tools, and 
workpieces. Robots are calibrated with an accuracy that is less 
than 1 mm and are typically rigidly fixed to the ground. The 
engineering costs required to achieve this are quite high.

Inaccuracies stem from inaccurate fixtures, the localiza-
tion inaccuracy of active or passive mobile robot systems, 
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Figure 4. The extended product–process–resource modeling 
approach. Various types of models are created and (re)used for 
integration in an industrial automation solution. Process models 
reuse technology models to reduce the effort in parameterizing 
process steps. Process models refer to product properties and 
resources used in manufacturing the product.
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or even inaccurate work pieces, e.g., bars that are manually 
cut to length. Robot programmers have to envisage the 
resulting uncertainties and their implications. The costs are 
then shifted from engineering to programming but still 
remain high.

The SMErobotics initiative’s approach is to encapsulate the 
uncertainty handling within so-called skills, which can be 
parametrized and reused in different applications [13]. This 
reduces the programming effort for such tasks and relaxes 
accuracy requirements of part positions in the workcell.

Skills are basic operations that can be combined to form 
complex tasks. Depending on their reusability, skills can gen-
erally be divided into the following groups:
1) universally applicable skills
2) common skills for a certain application domain
3) specific skills for a range of products/single product.

Universal skills such as handling, picking, or placing 
objects (Figure 5) are relevant not only for assembly but for 
most other domains as well. A challenging and well-known 
problem is the peg-in-hole assembly operation, where a peg 
has to be inserted into a narrow hole via force control [14]. 
After implementing the skill once, it can be reused for a range 
of pegs and holes by adapting the parameters of the skill.

Learning-Based Cycle-Time Minimization
For automated machining processes, expenses can be greatly 
reduced by decreasing the cycle time of desired tasks. This 
can be achieved by adapting the machining feed rate in 
combination with intelligent path planning of the machin-
ing task. Path planning is a complex task, especially for 
woodworking operations, due to the nonisotropic properties 
of the material. We developed a learning-based approach for 
milling to effectively minimize the cycle time independent 
of a priori knowledge of the machining process [15]. Differ-
ent coverages of the milling tool in different directions result 
in varying behavior because of the nonsymmetry of the 
tool’s teeth and the material’s properties. The milling strate-
gy is determined such that it minimizes the time to mill and 
return to the starting side of the milling operation. It consid-
ers the effects of tool coverage and feed rate as well as the 
cutting direction of the tool. Figure 6 shows the learned path 
for a pocket milling task.

Anomaly Detection and Error Handling
A human-friendly robot system must be designed keeping in 
mind the possibility of faults and mistakes caused by either 
the robot or the user. From an operator’s perspective, clear 
indications of (suspected) faults, their causes, and possible 
responses are crucial.

We combined Bayesian networks and extended Markov 
chains to automatically learn the nominal execution of a given 
process based on related sensor data and to detect deviations 
thereof [16], as shown in Figure 7. On detection of a fault, the 
system may use one or multiple modes of communication to 
indicate the problem, depending on the available hardware 
and the type of fault.
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Figure 5. A graphical skill specification tool developed within the 
SMErobotics project. The displayed pick skill consists of a sequence of 
individual steps with conditional branches.

Figure 6. The learned milling path for pocket milling using an 
auto-training algorithm. Dashed black lines represent transitions 
between pockets. Each color represents a different milling path 
for an individual pocket.
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Fault indications give general information like “Failed to 
grasp object X” and explanations of the faults’ causes, e.g., 
“Object is out of reach” or “Gripper has failed to actuate.” The 
user’s responses are automatically learned by the system and 
stored in the form of updated probabilities and/or structural 
changes in the Bayesian networks. If previously learned, the 
system may suggest suitable recovery actions.

Product-Centric Instruction of Robots
Classical robot-centric programs define a sequence of func-
tions that achieve a specific purpose, in the form of either 
text-based programs or graphical function blocks. Program-
ming environments may combine this with CAD models of 
the workcell to use geometrical information in path defini-
tions. In these approaches, the semantic context of the process 
is not encoded.

In service robotics, on the other hand, users specify the 
desired goal rather than manually program individual steps. 
In a similar fashion, we enable shop floor workers to 
instruct a robot in their domain language. The product-cen-
tric paradigm focuses on an abstract process definition that 
can be deployed on different workcells with matching capa-
bilities without the need to adjust the process specification. 
Using our system’s knowledge representation (see the 

“Seamless Integration of Production Knowledge” section), 
the process is structured into a sequence of tasks that are 
mapped to a set of workcell-specific skills (see the “Uncer-
tainty-Aware Skills” section) [13]. The system is provided 
with common knowledge, e.g., colors, units, and locations, 
as well as domain-specific knowledge, e.g., the types of tasks 
in a particular domain such as assembly or welding and 
their relevant task parameters.

We provide end users with domain-specific interfaces 
[17] that enable them to design their manufacturing process 
[10] with a direct connection to the semantic models of 
involved objects (Figure 8). To some extent, task parameters 
are automatically inferred from the selected object and the 
current context. Based on the requirements of the process 
and the capabilities of the workcell, the system uses logical 
inference and planning to generate a feasible task sequence 
for a particular workcell. In case of errors, the high-level task 
taxonomy is exploited to generate human-understandable 
feedback for the user (see the “Anomaly Detection and Error 
Handling” section).

Product-Driven Program Generation for Assembly
In contrast to large-scale automation with no variations, man-
ual specification of robot programs or process instructions 

ReplacePn...

NotReplace...

Replace Pneumatics...

RepairActu...

NotRepairA...

Repair Actuator Res...

ReplaceMis...

NotReplace...

Replace Missing Obj...

MissingPne...

NotMissing...

Missing Pneumatic...

RepairActu...

NotRepairA...

Actuator Failure

MissingObj...

NotMissing...

Missing Object Fault

GripperOperation

NotGripperOperation

Gripper Operations Error

IsMissing

NotIsMissing

Missing Object Error

GripperOpen

NotGripperOpen

Gripper Open

GripperClosed

NotGripperClosed

Gripper Closed

Response

Fault

Error

Anomaly

41% 

59% 

44% 

56% 

76% 

24% 

39% 

61% 

43% 

57% 

82% 

18%

9% 

91% 

91% 

9% 

0% 

100% 

100% 

0% 

Figure 7. Given detected anomalies, the Bayesian network can infer the most likely causes. If response strategies have been modeled, 
these can be automatically executed with or without the involvement of the user.
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is no longer viable with a shift in market demand (e.g., indi-
vidualized goods and other variants) leading to mass cus-
tomization, thus affecting the manufacturing company itself 
and its production facilities, system architecture, and pro-
gramming. paradigm.

For the domain of mechanical assembly, we developed an 
automatic assembly planner capable of exploiting product 
knowledge, i.e., using the 3D model of the desired assembly 
(Figure 9) as an alternative to a manual process specification 
[18]. The planner automatically generates multiple pairwise 
disassembly relations that, combined with information about  
forces and connectivity, lead to the creation of an AND/OR 
graph describing possible assembly sequences. A tight integra-
tion between the grasp and motion planner ensures that the 
subassemblies can be grasped and executed in the robot work-
cell. The grasp planner considers information concerning con-
straints and possible collisions with the environment as well as 
the assembly process and the joining action itself, while mini-
mizing a desired objective function, e.g., the torque exerted on 

the gripper. Based on this process, appropriate nodes of the 
AND/OR graph are pruned, resulting in a sequence of valid 
steps to produce the desired assembly [19].

To efficiently analyze the reachable workspace for a given 
robot, we further developed a motion capability representa-
tion. Feasible goal locations are precomputed offline and effi-
ciently stored in a capability map [20]. As a result, the map 
can be efficiently queried online to determine the reachability 
of end-effector poses.

Evaluation in Real-World Demonstrators
A major objective of the SMErobotics initiative is to push its 
scientific and technological advances into actual production 
companies within a variety of industries.

To ensure this transfer toward real applications, four core 
demonstration partners tied to four major European robot 
manufacturers have been involved since the early stages 
when the core technological and scientific objectives were 
specified. Supplemental demonstration partners joined the 
project at a later stage via open calls [21] to evaluate the 
adaptability and versatility of the developed technologies in 
applications that were not precisely known during the speci-
fication phase.

SMErobotics results have been validated in real industrial 
settings through eight demonstrators covering three applica-
tion domains: mechanical assembly [Figure 10(a)–(f)], weld-
ing [Figure 10(g) and (h)], and woodworking [Figure 10(i)].

Mechanical Assembly Domain

Dual-Arm Assembly With Product-Centric Instruction
In this demonstrator, a dual-arm Comau RML robot with two 
parallel grippers was used to perform a high-precision assem-
bly of a mechanical gearbox [Figure 10(a)]. The workcell was 

Figure 9. The desired assembly of aluminum profiles connected via brackets that are fixed by multiple screws and nuts. The CAD 
models serve as an input to the assembly planning component: (a) the exploded view of assembly and (b) the connectivity graph.

<profileT, nutslot3>

<profileM, nutslot1, nutslot2>

<angle-bracket2>

<screw3>

<screw2>

<screw1>

<angle-bracket1>
<profileB, nutslot4>

<screw4>

(a) (b)

Figure 8. The intuitive web interface for industrial assembly tasks. 
The depicted example shows the first steps of a gearbox assembly 
process [Figures 10(a) and 11] on a virtual assembly table.
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Figure 10. Demonstrators used to evaluate new technologies in the SMErobotics project: the (a) assembly of a gearbox, (b) assembly 
of a latch valve, (c) riveting for the assembly of custom grippers, (d) assembly of aluminum profiles, (e) assembly of high variants 
of valves, (f) subassembly of energy converters including tightening screws, (g) smart welding with automatic sensor-based path 
correction, (h) intuitive teaching of welding tasks, and (i) construction of a wall for a wooden house. [Part (b) courtesy of Tecnalia, 
Spain; part (c) courtesy of Kuka, Germany; part (d) courtesy of DLR Oberpfaffenhofen, Germany; part (f) courtesy of DTI, Denmark; 
part (g) courtesy of Fraunhofer IPA, Germany; and part (h) courtesy of INESC-TEC, Portugal.] 

(a) (b)

(c) (d) (e)

(f) (g)

(h) (i)
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equipped with a camera for object recognition and a projector 
for highlighting detected parts on the work table. A high-level 
description of the assembly steps is shown in Figure 11.

For use in our product-centric instruction approach, we 
modeled a constraint-based assembly task based on a seman-
tic description language (see the “Product-Centric Instruction 
of Robots” and “Explicit Semantics” sections). In this repre-
sentation, valid assembly poses are represented by a set of 
geometric constraints between individual vertices, edges, or 
faces in the CAD models of two objects. Using an intuitive 
touch interface, the operator can instantiate the task for a par-
ticular pair of objects and input the required constraints (Fig-
ure 8). This approach is easier for workers to understand, 
compared with raw coordinates and Euler angles. The final 
process description consists of a sequence of tasks that is 
independent of a particular hardware setup. In a second 
phase, the process is deployed into a specific workcell. As our 
workcells are semantically described as well, we can use auto-
matic reasoning techniques to check the compatibility of the 
process and workcell and infer additional tasks required for 
establishing this compatibility.

To evaluate our approach, we conducted a preliminary 
user study (https://youtu.be/B1Qu8Mt3WtQ) [10] that com-
pared the time required to implement the assembly of the 

gearbox using our intuitive interface 
and using a teach pendant. The results 
are summarized in Table 1. Using our 
product-centric approach, we were able 
to achieve an 80% reduction in pro-
gramming time.

Compliant Assembly of Loosely 
Supplied Parts
Our target application in this demon-
strator is the assembly of 228 variant 
hydraulic valve sections consisting of 
the main body, spool, positioner, 
spring, O rings, and other parts [Fig-
ure 10(e)]. Due to the small tolerances 
allowed in this application, assembly 
strategies must rely on contact-based 
motions and the robot’s programma-
ble virtual stiffness. To handle the 

high number of variants, we implemented reusable skills, 
e.g., a force-enabled peg-in-hole skill that, in combination 
with the robot’s compliance, enabled the system to success-
fully assemble the valve sections (https://youtu.be/IE9l-
0rAMOiY; see the “Uncertainty-Aware Skills” section).

While the end user estimated that a cycle time of 5 min 
per valve section must be achieved for economic operation, 
the system was only able to achieve a cycle time of 15–20 min 
due to nonvalue-adding operations such as the preparation 
steps for loosely supplied parts, tool changes, and/or handling 
and clamping of components. However, the production quali-
ty was improved compared with manual assembly, resulting 
in fewer rejects. With an additional investment for dedicated 
screwdriver tools and feeder devices, the final production cell 
was able to achieve a cycle time lower than 5 min [22].

Automatically Planned Assemblies
Our use case in this demonstrator is the automated construc-
tion of different structures from aluminum profiles, brackets, 
slot nuts, and screws (Figure 9). Two compliant Kuka LBR iiwa 
robots are equipped with parallel grippers that can pick up an 
electrical screwdriver as needed. The individual parts are sup-
plied through dedicated fixtures.

The desired product configuration has to be provided 
through either a 3D model of the final assembly or a demon-
stration by the operator (https://youtu.be/2jYhdmk-pMg). 
The assembly sequence planner then uses geometrical rea-
soning on the contained parts to generate a suitable sequence 
of operations that leads to the final product (see the “Product-
Driven Program Generation for Assembly” section). After-
ward, an algorithm maps the required sequence to executable 
robot skills. For this, we implemented a pick-and-place skill as 
well as force-enabled robot skills, e.g., for inserting the slot 
nuts into the aluminum profiles (see the “Uncertainty-Aware 
Skills” section). Complex operations such as the insertion of 
brackets require a coordinated, dual-arm skill, with one robot 
holding the profile and the other robot inserting the bracket.

Figure 11. The assembly of the core element of a gearbox is based on four parts and 
performed in three steps. The first two steps are independent of each other, and the third 
step needs to be executed after the first two have been completed.

Table 1. Evaluation of time (in minutes) taken for 
an assembly process.

Programming 
 Assignment

Robotics Expert: 
Our System

Robotics Expert: 
Teach Pendant

Teaching new 
 assembly task 8 48

Adapting to new 
object poses 0 23

Reordering 
 assembly steps 2 5
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Reliable Assembly and Screw Tightening
This use case deals with the assembly of a frequency converter 
[Figure 10(f)] in a workcell featuring a compliant robot arm, a 
flexible tool (consisting of a parallel gripper, screwdriver, and 
hand camera), and our Robot Co-Worker [23] skill editor 
(https://youtu.be/sgulAxn5-_o).

We implemented uncertainty-aware skills for snap-fitting 
parts and inserting screws (see the “Uncertainty-Aware Skills” 
section). The snap-fitting skill adjusts the robot’s motion 
based on measured external forces on its end effector. For 
using the screw insertion skill, we need only specify the  
location of screw holes with a sufficient tolerance (in this  
case, only 0.5–1.0 mm). The compliant features of the robot 
arm, coupled with the torque control of the automatic screw-
driver, enable reliable screw insertion using this coarse speci-
fication. In addition, we can automatically detect anomalous 
execution and use the operator’s help to recover from it (see 
the “Anomaly Detection and Error Handling” section). Before 
each execution of a skill, the relevant object is detected using 
the robot’s eye-in-hand camera.

Welding Domain
The two welding demonstrators share a similar setup. They 
both feature a 3D sensor for localizing parts and provide 
equipment for metal active gas welding. While the Reis robot 
[Figure 10(g)] has a 3D sensor mounted on its end effector, 
the Comau RML-based demonstrator [Figure 10(h)] has a 
sensor statically mounted in the workcell. The latter workcell 
additionally provides a laser line projector that is used to give 
feedback to the operator.

Uncertainty-Aware Welding Operations
Welding operations in SME-like manufacturing often face 
issues such as heat-induced bending of parts and large part 
variations due to the manual tack-welding of subassemblies. 
Errors in part localization or in the calculation of robot 
trajectories are also very common. To cope with these uncer-
tainties, different solutions have been implemented for the 
two workcells.

Augmented Reality-Supported Welding
In this approach, we provide feedback to the user to vali-
date upcoming welding operations before their actual exe-
cution. This validation can save a significant amount of 
rework. Based on the workcell’s laser projector, we devel-
oped an augmented reality system that supports the user in 
intuitively programming the robot and validating before-
hand the welding operations (see the “Product-Centric 
Instruction of Robots” section). The system highlights 
detected parts and related weld seams (Figure 12), allowing 
the user to adjust positions or alignments before the opera-
tion is executed.

Automatic Adaptation to Part Deviations
To automatically cope with geometric uncertainties, it is essen-
tial to accurately localize relevant parts and detect potential 

deviations of these parts from their ideal CAD models. For 
this, we implemented a welding skill that matches CAD data 
with point clouds from a 3D scan (see the “Uncertainty-
Aware Skills” section). Like the correction of the robot path, 
the welding parameters can be adapted according to the 
detected deviations [24], e.g., in case of gaps, in the joint 
geometry. Figure 13 depicts the resulting weld seams with and 
without the compensation of assembly deviations.

Product-Centric Instruction of the Robot
In this experiment [Figure 10(g)], 13 weld seams on a previ-
ously tack-welded steel work piece had to be programed using 
our object-centric paradigm (see the “Product-Centric 
Instruction of Robots” section). The weld seams had lengths 
ranging from 90 to 480 mm. The evaluation of the required 
programming time for two test subjects—an SME shop floor 
worker and a robotics expert—indicate an increase in effi-
ciency compared with a regular robotic welding cell (Table 2).

Woodworking Domain
Two experiments in the woodworking domain are based 
on an existing robot cell used by an SME to produce walls 
for wooden houses. The robot is a 6-degrees of freedom gan-
try system [Figure 10(i)]. Its workspace covers approximately 

Figure 12. The augmented reality interface using a laser line 
projector to highlight (a) recognized objects and (b) features 
such as potential weld seams.

(a) (b)

Figure 13. A welded workpiece (a) without compensation and 
(b) with compensation of assembly deviations.

(a) (b)
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30 × 4 m. Two robot-attachable tools can be automatically 
exchanged via a tool changer. The first tool consists of a 
rectangular vacuum gripper for picking wooden panels 
and an integrated nail gun, while the second tool is 

a circular saw. The workcell also 
fea  tures a dedicated measurement 
station that can be used by the robot 
to very accurately identify the ori-
entation of a picked panel.

Product-Centric Instruction  
of the Robot
Based on our product-centric teaching 
paradigm (see the “Product-Centric 
Instruction of Robots” section), an 
expert in traditional robot program-
ming was asked to instruct the robot 
to perform a specific task, as described 
in Figure 14. The expert has multiple 
years of experience in programming 
robots via a combination of teach pen-
dant and CAD software but was a first-
time user of our instruction approach. 
We compared the time required for 
creating the process description with 
the effort required to implement the 
same process on the teach pendant 
[10] (https://youtu.be/bbInEMEF-
5zU). The results are presented in 
Table 3. The product-centric instruc-
tion ap  proach yielded a 70% reduction 
in programming time.

Besides the constraint-based as -
sembly task from the assembly do -
main (see the “Dual-Arm Assembly 
With Product-Centric Instruction” 
section), we introduced additional 
types of tasks to our framework: a nail-
ing task, a sawing task, and a task for 
measuring the exact orientation of 
picked panels. Based on these tasks, 
the robot can be programmed on an 
abstract level for which the user defines 
instances of tasks that are inherently 

connected to the selected objects.
Exploiting the logical formalism behind our knowledge-

based instruction approach, automatic reasoning is used to fill 
in gaps of underspecified process descriptions (see the 
“Explicit Semantics” section). For instance, specific actions 
such as the measuring of the position of picked panels are 
inserted automatically to ensure their exact placement.

Learning-Based Process Adaptation
For this experiment, we integrated additional sensors into the 
workcell to improve the sawing operations in terms of quality 
and cycle time (see the “Learning-Based Cycle-Time Minimi-
zation” section).

While sawing, the wear of the sawing blade and the path 
speed affect the quality of the cut. As the wear of the sawing 
blade gradually increases over time, the operator typically 

Figure 14. The assembly of a wall of a wooden house is based on a frame and two 
panels and is performed in five steps. The process involves picking the panels and 
placing them onto the frame. Subsequently, they are nailed to the frame, and the panels’ 
overhang is removed through a sawing operation.

Table 3. Evaluation of time (in minutes) taken to 
program a woodworking process involving the 
construction of a wall.

Programming 
 Assignment 

Robotics Expert: 
Our System

Robotics Expert: 
Teach Pendant

Teaching new pro-
cess (Figure 14)

13 47

Change order of 
process steps 

0.2 1.6

Table 2. Evaluation of time (in minutes) taken to program  
individual steps of a welding process.

Process Step 
Robotics Expert: 
Our System

SME Worker: 
Our System

SME Worker: 
Teach Pendant

Coarse teaching of welding 
poses including collision 
avoidance

0 0 117

Fine teaching of welding 
poses including collision 
avoidance 

8.5 10 23

Parameter tuning due to false  
end-effector positioning 

0 0 50

Calibration due to collision 
during programming 

0 0 10

Total (without fixturing time) 8.5 10 200

Localization/fixturing of 
workpiece 

2.5 4.5 n/a

Total 11 14.5 200 + fixturing 
time
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lowers the path speed of blunt blades to achieve an acceptable 
quality. We evaluated several sensor modalities (audio, power, 
and accelerometer) to offer assistance in selecting the optimal 
path speed and determining when the blade is too blunt and 
needs to be replaced. By combining the different types of sen-
sors, the developed wear-assessment component can distin-
guish between a reduction of the sawing blade’s sharpness and 
the blade being warped due to extensive use. The latter condi-
tion could still occur after a blunt blade was resharpened [25].

Open Issues and Future Work
Introducing smart robots with cognitive abilities into robotic 
and automation systems is a highly challenging task and 
beyond the scope of a single project, especially for the agile 
production environments typically found in SMEs. Within 
SMErobotics, we identified the main challenges that current-
ly impede the use of robots in SMEs and developed several 
solutions beyond the state of the art that lead to an increase 
in productivity and quality. Through eight diverse demon-
strators, we showed that the solutions noted in the “SMEro-
botics Solutions” section are relevant and applicable across 
several domains.

Knowledge integration based on semantic models facili-
tates the formal description of relevant aspects of automation 
systems. Enhancing these models to fully encode the knowl-
edge of a particular domain and the integration of more 
domains will be an important task in the future. Being able to 
handle uncertainties on multiple levels is essential in unstruc-
tured SME-like environments. Uncertainty-aware skills can 
provide the flexibility and adaptability required to realize pro-
cesses previously deemed infeasible to automate. The use of 
the skill-based programming paradigm is slowly increasing in 
the industry, as indicated by a recent draft by the German 
Mechanical Engineering Industry Association (VDMA) of 
standardized sets of skills. These so-called VDMA compan-
ion specifications cover various domains, such as robotics or 
integrated assembly solutions. Our initial evaluations have 
shown that reducing the complexity of programming indus-
trial robots is essential for financially viable small-lot produc-
tion. More comprehensive evaluations must be conducted in 
the future to ensure that our concepts are suitable for a larger 
target audience.

Feedback from end users at the Hanover and Automatica 
trade fairs in 2014 and 2016 as well as the data from our 
Robot Investment Tool (see the “Investment Decision Sup-
port Tool” section) indicates a great interest in the topics of 
our project. To further facilitate the transition from tradition-
al production paradigms to digital and robot-based facilities, 
EU-funded Digital Innovation Hubs are expected to provide 
easier access to technological facilities, expert knowledge, and 
educational and business support.
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