
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/334164343

Agile Operational Behavior for the Control-Level Devices in Plug&Produce

Production Environments

Conference Paper · September 2019

CITATIONS

0
READS

103

5 authors, including:

Some of the authors of this publication are also working on these related projects:

FRONTICS View project

Data Backbone View project

Kirill Dorofeev

fortiss

11 PUBLICATIONS   29 CITATIONS   

SEE PROFILE

Stefan Profanter

fortiss

18 PUBLICATIONS   119 CITATIONS   

SEE PROFILE

Pedro Ferreira

Loughborough University

24 PUBLICATIONS   123 CITATIONS   

SEE PROFILE

Alois Zoitl

Johannes Kepler University Linz

205 PUBLICATIONS   2,118 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Kirill Dorofeev on 02 July 2019.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/334164343_Agile_Operational_Behavior_for_the_Control-Level_Devices_in_PlugProduce_Production_Environments?enrichId=rgreq-23767efd599c3cbd838a051bc92f5406-XXX&enrichSource=Y292ZXJQYWdlOzMzNDE2NDM0MztBUzo3NzYxNTMxODI3NjUwNTZAMTU2MjA2MDc0NzM3NA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/334164343_Agile_Operational_Behavior_for_the_Control-Level_Devices_in_PlugProduce_Production_Environments?enrichId=rgreq-23767efd599c3cbd838a051bc92f5406-XXX&enrichSource=Y292ZXJQYWdlOzMzNDE2NDM0MztBUzo3NzYxNTMxODI3NjUwNTZAMTU2MjA2MDc0NzM3NA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/FRONTICS?enrichId=rgreq-23767efd599c3cbd838a051bc92f5406-XXX&enrichSource=Y292ZXJQYWdlOzMzNDE2NDM0MztBUzo3NzYxNTMxODI3NjUwNTZAMTU2MjA2MDc0NzM3NA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Data-Backbone?enrichId=rgreq-23767efd599c3cbd838a051bc92f5406-XXX&enrichSource=Y292ZXJQYWdlOzMzNDE2NDM0MztBUzo3NzYxNTMxODI3NjUwNTZAMTU2MjA2MDc0NzM3NA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-23767efd599c3cbd838a051bc92f5406-XXX&enrichSource=Y292ZXJQYWdlOzMzNDE2NDM0MztBUzo3NzYxNTMxODI3NjUwNTZAMTU2MjA2MDc0NzM3NA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kirill_Dorofeev?enrichId=rgreq-23767efd599c3cbd838a051bc92f5406-XXX&enrichSource=Y292ZXJQYWdlOzMzNDE2NDM0MztBUzo3NzYxNTMxODI3NjUwNTZAMTU2MjA2MDc0NzM3NA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kirill_Dorofeev?enrichId=rgreq-23767efd599c3cbd838a051bc92f5406-XXX&enrichSource=Y292ZXJQYWdlOzMzNDE2NDM0MztBUzo3NzYxNTMxODI3NjUwNTZAMTU2MjA2MDc0NzM3NA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/fortiss?enrichId=rgreq-23767efd599c3cbd838a051bc92f5406-XXX&enrichSource=Y292ZXJQYWdlOzMzNDE2NDM0MztBUzo3NzYxNTMxODI3NjUwNTZAMTU2MjA2MDc0NzM3NA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kirill_Dorofeev?enrichId=rgreq-23767efd599c3cbd838a051bc92f5406-XXX&enrichSource=Y292ZXJQYWdlOzMzNDE2NDM0MztBUzo3NzYxNTMxODI3NjUwNTZAMTU2MjA2MDc0NzM3NA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Stefan_Profanter?enrichId=rgreq-23767efd599c3cbd838a051bc92f5406-XXX&enrichSource=Y292ZXJQYWdlOzMzNDE2NDM0MztBUzo3NzYxNTMxODI3NjUwNTZAMTU2MjA2MDc0NzM3NA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Stefan_Profanter?enrichId=rgreq-23767efd599c3cbd838a051bc92f5406-XXX&enrichSource=Y292ZXJQYWdlOzMzNDE2NDM0MztBUzo3NzYxNTMxODI3NjUwNTZAMTU2MjA2MDc0NzM3NA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/fortiss?enrichId=rgreq-23767efd599c3cbd838a051bc92f5406-XXX&enrichSource=Y292ZXJQYWdlOzMzNDE2NDM0MztBUzo3NzYxNTMxODI3NjUwNTZAMTU2MjA2MDc0NzM3NA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Stefan_Profanter?enrichId=rgreq-23767efd599c3cbd838a051bc92f5406-XXX&enrichSource=Y292ZXJQYWdlOzMzNDE2NDM0MztBUzo3NzYxNTMxODI3NjUwNTZAMTU2MjA2MDc0NzM3NA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Pedro_Ferreira29?enrichId=rgreq-23767efd599c3cbd838a051bc92f5406-XXX&enrichSource=Y292ZXJQYWdlOzMzNDE2NDM0MztBUzo3NzYxNTMxODI3NjUwNTZAMTU2MjA2MDc0NzM3NA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Pedro_Ferreira29?enrichId=rgreq-23767efd599c3cbd838a051bc92f5406-XXX&enrichSource=Y292ZXJQYWdlOzMzNDE2NDM0MztBUzo3NzYxNTMxODI3NjUwNTZAMTU2MjA2MDc0NzM3NA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Loughborough_University?enrichId=rgreq-23767efd599c3cbd838a051bc92f5406-XXX&enrichSource=Y292ZXJQYWdlOzMzNDE2NDM0MztBUzo3NzYxNTMxODI3NjUwNTZAMTU2MjA2MDc0NzM3NA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Pedro_Ferreira29?enrichId=rgreq-23767efd599c3cbd838a051bc92f5406-XXX&enrichSource=Y292ZXJQYWdlOzMzNDE2NDM0MztBUzo3NzYxNTMxODI3NjUwNTZAMTU2MjA2MDc0NzM3NA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alois_Zoitl?enrichId=rgreq-23767efd599c3cbd838a051bc92f5406-XXX&enrichSource=Y292ZXJQYWdlOzMzNDE2NDM0MztBUzo3NzYxNTMxODI3NjUwNTZAMTU2MjA2MDc0NzM3NA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alois_Zoitl?enrichId=rgreq-23767efd599c3cbd838a051bc92f5406-XXX&enrichSource=Y292ZXJQYWdlOzMzNDE2NDM0MztBUzo3NzYxNTMxODI3NjUwNTZAMTU2MjA2MDc0NzM3NA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Johannes_Kepler_University_Linz?enrichId=rgreq-23767efd599c3cbd838a051bc92f5406-XXX&enrichSource=Y292ZXJQYWdlOzMzNDE2NDM0MztBUzo3NzYxNTMxODI3NjUwNTZAMTU2MjA2MDc0NzM3NA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alois_Zoitl?enrichId=rgreq-23767efd599c3cbd838a051bc92f5406-XXX&enrichSource=Y292ZXJQYWdlOzMzNDE2NDM0MztBUzo3NzYxNTMxODI3NjUwNTZAMTU2MjA2MDc0NzM3NA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kirill_Dorofeev?enrichId=rgreq-23767efd599c3cbd838a051bc92f5406-XXX&enrichSource=Y292ZXJQYWdlOzMzNDE2NDM0MztBUzo3NzYxNTMxODI3NjUwNTZAMTU2MjA2MDc0NzM3NA%3D%3D&el=1_x_10&_esc=publicationCoverPdf


Agile Operational Behavior for the Control-Level
Devices in Plug&Produce Production Environments

Kirill Dorofeev∗, Stefan Profanter∗, Jose Cabral∗, Pedro Ferreira†, Alois Zoitl∗
∗fortiss GmbH, Munich, Germany

{dorofeev, profanter, cabral}@fortiss.org
†Wolfson School of Mechanical and Manufacturing Engineering Loughborough University, Loughborough, United Kingdom

p.ferreira@lboro.ac.uk
‡fortiss GmbH, Munich, Germany / Johannes Kepler University, Linz, Austria

alois.zoitl@jku.at

Abstract—The ongoing manufacturing systems transformation
from mass production towards mass customization requires more
flexible engineering solutions than the existing ones. The recently
proposed control architectures target, among other plug-and-
produce features, a reduction of configuration times. This is
relevant for building a new production line as well as for
faster reconfiguration when adding new hardware and product
variants to an existing manufacturing line. This paper identifies
operational requirements for such reconfiguration scenarios and
proposes a way to implement them using the concept of a
device adapter. The device adapter contains a device description
and constantly updates it following the reconfiguration changes
happening in a manufacturing system. This allows not only
to detect the changes in the hardware, which appear in the
production system, using the device discovery mechanisms but
also automatically adapt the software. Preliminary tests have
been performed on a demonstrator that shows both virtual and
physical executions combined in a single system. The proposed
solution supports automatic hardware and software reconfigu-
ration on-the-fly without a need to stop and restart the whole
production system.

Index Terms—Reconfigurable Manufacturing Systems, Skill-
Based Engineering, AutomationML, OPC UA

I. INTRODUCTION

The fast-changing market forces the manufacturing compa-
nies to increase their production systems flexibility by intro-
ducing new technologies and architectures at all control levels.
The emergent control architectures aim at providing flexibility
by plug-and-produce features such as service discovery and
automatic software composition [1]. The flexibility require-
ments can be divided into 1) product flexibility that enables
production of a huge number of product variants 2) technology
flexibility that eases the use of different technologies within the
production process and 3) resource flexibility that empowers
the easy application of different assets within production
processes [2].

In traditional mass production, switching to a different
product variant usually requires either stopping to reconfigure
the equipment, or allocating specific production lines for

The research leading to these results has received funding from the Euro-
pean Unions Horizon 2020 research and innovation programme under grant
agreement No 680735, project openMOS (Open Dynamic Manufacturing
Operating System for Smart Plug-and-Produce Automation Components).

each variant. However, a key part of smart-manufacturing is
flexibility, allowing variants of a product to be made using
the same equipment without the need to stop production and
retooling. Flexibility includes the concepts of variable routing,
where the products take the most efficient path through pro-
duction machines at the current time, as well as order based
production, where the parts are only made in quantities and
variants specific to customer request.

This paper describes the set of operational requirements that
should be fulfilled by the automation components on the field-
device level in order to achieve the required flexibility and be
capable of the reconfiguration on-the-fly. Further, we show
how to implement the proposed concepts using Automation
Markup Language (AutomationML) and OPC Unified Archi-
tecture (OPC UA). Furthermore, the running example is a
fully-functional demonstrator that combines both physical and
virtual executions and simulates the production of a complex
product with multiple variants. A rich transportation network,
where seven Automated Guided Vehicles (AGVs) ferry the
products between the workstations over 32 different paths
complements the demonstration complexity. While providing
a clear benefit in reconfiguration effort and time, the per-
formance comparison of our proof-of-concept implementation
with the legacy systems did not show a big overhead in the
production throughput.

II. RELATED WORK

The key technologies that enable the reconfiguration in
the production systems are the open-architecture control and
modular machines, responsible for the reconfigurable software
and hardware, respectively [3]. Mehrabi et al. [3] have also
outlined the need for the methods enabling efficient and fast re-
use of the automation components and their functionalities in
the Reconfigurable Manufacturing Systems (RMSs). One such
method is to semantically describe of the modules constituting
a production system and their functionalities [4] and to catalog
them. In process automation Module Type Packages (MTPs)
are used to encapsulate the process modules functionalities and
provide it in the form of service to the rest of the system [5].
The MTP manifest is modeled by means AutomationML that
is defined in IEC 62714 [6]. The information from MTP can



be shared between the automation modules throughout the
system by communicating it by means of OPC UA. OPC UA
allows representing the content of the MTP manifest in the
namespace of the module, enabling the modules discovery and
interaction [7].

The control software reconfiguration can be achieved by
employing the agent technology [8] that is successfully applied
for reconfiguration scenarios on the system level such as over-
all scheduling and planning. However, the current challenges
in production flexibility include such application scenarios
that can be only solved by moving the intelligence away
from system level to the production stations [9]. If production
stations of different vendors shall interact seamlessly, the use
of standardized and secure communication protocols, informa-
tion models, and functional specifications is essential for the
implementation of this use case. Therefore, there is a need to
have a reconfiguration mechanism also at the lower component
system level. As the changes that occur at the component level,
the whole system, as well as other interconnected systems,
should be able to reconfigure themselves. The information
about the current layout and operational state should be
available at any time.

III. PROBLEM MOTIVATION

In order to sustain in the market conditions that are charac-
terized by aggressive competition, the manufacturing systems
must be upgradable and allow easy integration of the new
functionalities and features. For dealing with such kind of
scenarios serves a paradigm of RMSs was proposed [10].
RMS is a system that consists of hardware and software
modules that can be quickly rearranged or replaced. Re-
configuration enables, in general case, adding, removing, or
modifying specific process capabilities, controls, software, or
machine structure. A RMS is characterized by 1) reduction
of time for launching new systems and reconfiguring existing
systems, and 2) the rapid manufacturing modification and
quick integration of new technology and/or new functions into
existing systems [3]. We put even more strict requirements on
the production system under consideration. While producing
different product variants, the system should never shut down
completely, allowing to deal with product customization and
various plug&produce devices on-the-fly. Additionally, to have
a lot of redundancy in the production scenarios, the system can
have a complex transportation network connecting different
workstations constituting the system.

In order to show the operational mechanism for such RMS
on the device level we developed a demonstrator, which
is used as a running example in this paper. The demon-
strator originates from the Open Dynamic Manufacturing
Operating System for Smart Plug-and-Produce Automation
Components (openMOS) research project. The main goals of
the project were: 1) embedding plug-and-produce capabilities
into automation devices, robots and machines, 2) enabling
vertical and horizontal connectivity between plug&produce
automation components and higher level control and business
functions, and 3) creating an easily extendable and adaptable

manufacturing operating system (MOS) that permits the easy
introduction of new products, work orders and changes in
the equipment and allows easy deployment of optimization
and changeover management strategies. To develop and test
most of the proposed features, as well as to examine the
scalability of the solution, a demonstrator was developed that
implements an ”openMOS-enabled” simulation environment.
At its most basic, the demonstration has the following key re-
quirements, derived from the use-case scenarios from multiple
intelligent manufacturing scenarios among different industry
sectors (electronics, white goods, automotive):

• Scalability - One feature that required testing is how the
developed Device Adapter (DA) cope with a large number
of workstations. Thus, openMOS should function with
hundreds of devices, which consequently requires large-
scale testing. This allows us to add and remove a large
number of different workstations in the system on-the-fly.

• Plug&Produce - Associated with scalability, one of the
key tenets of openMOS is the ability for equipment
to be added or removed from the production system,
without manual reconfiguration and system restart. This
requires sufficient numbers of each workstation type for
production so that there always remains a possibility to
pick an alternative path to conclude the production. The
workstations themselves must also be isolated from each
other, to allow them to be removed individually.

• Transportation - For plug&produce to be viable, material
flow within the system must not be workstation depen-
dent. Should a workstation be added or removed, it must
not only appear within the supply chain but must also
be connected to the transportation network. Therefore a
flexible transportation system is required to enable the
concepts.

• Product Variation - An essential requirement was to
have many workstations, which could be used to provide
the multiple production lines required to allow product
variations. Therefore, the end product has been chosen
specifically to include multiple variants. It is a generic
electronic device assembled from four components: two
casing parts and two electronic internals shown in Fig. 1.
In addition to the components, a gluing process is ex-
ecuted to hold the parts together once assembled. The
product casing, internals, and gluing process can all be
varied, allowing for individual products to be customized
greatly, with 18 variants overall.

• Optimization - The agent–based control system for open-
MOS includes an optimizer which attempts to make the
overall system more efficient. For this optimizer to work,
the stations must have tunable parameters, which can be
modified to alter overall material flow without stopping
the system.

IV. CONCEPT

A reconfigurable manufacturing system is designed to cater
to the situations where both system productivity and its ability
to deal with a rapid change in a structure are of great



Fig. 1. Production Process

importance [11]. A manufacturing system is composed of
equipment, including transport and workstations, containing
multiple sub-components. We propose an implementation of
such a reconfigurable manufacturing system by utilizing a con-
cept of a skill [12] [13] as a way to normalize the functionality
of each device in a production system and provide a generic
interface to execute a production task. In the previous paper,
we introduced a concept of a DA [14], a software wrapper
that allows a device to be seamlessly plugged in into an
agile production environment. Each system component has
its capabilities modeled in the form of a skill. The proposed
system architecture [15] is shown in Fig. 2, where the low-
level devices being responsible for executing a production are
connected to their cloud representation, which main task can
be seen as the overall production optimization. This is achieved
by constantly monitoring the data gathered from the devices
via the DAs.

Fig. 2. System architecture

The device level requires atomic devices which are aggre-
gated up to workstation level, the highest level of granularity.
This means all devices internal to a workstation will require
communication with the ability to expose their skills to the
upper level. This communication will be critical for the

performance of the system, as it implies the ability to execute
skills, and therefore requires a higher level of priority. Each
device has a self-description that follows a common semantic
model and provides, among other data, the information about
its capabilities [16].

On the cloud level of the solution, there are two aspects
to consider: the cyber representations and the device data.
The cyber representations are achieved through the agents,
which are the counterparts for the highest level resources,
namely the resource agent (workstation) and the transport
agent. The agents require a direct connection to their physical
counterparts, which will provide the ability to monitor the
system and explore potential optimizations. These agents are
expected to interact with other agents to achieve their goals.
It is important to note that agent to agent communication will
not go through the service bus but directly between the agents
within the cloud. The device data for every device in a system
is stored in the cloud. This data can then be accessed by the
agents on the cloud to inform their decision-making process.

The Manufacturing Service Bus (MSB), the middleware
layer, provides a uniform communication mean for the whole
system, enabling a mechanism for an easy component discov-
ery, configuration, and interoperability.

We define four operational phases to achieve a running
Plug&Produce system [17]: Discovery, Configuration, Produc-
tion, and Reconfiguration. In this paper, we concentrate on
the Reconfiguration phase and the tasks that arise when a
new product is introduced into such a system or a worksta-
tion/module is either plugged in or unplugged. In response to
such changes the system should be capable of performing a
job change when new production task arrives, or if there is a
change in communication parameters, or if there is a change
in hardware setup. This allows rapid integration, adaptation of
different devices and assembly stations.

The skills are defined in a device description file that serves
as an input for a DA: each adapter is automatically generated
out of its description. The skills can be later matched with
product definitions and, afterward, a skill sequence, needed for
production, can be derived. Skills vary from atomic (elemen-
tary skills, executed by single backend device) to composite
(an ordered set of atomic or other lower-level composite
skills).

The execution of skills is performed by skill recipes. A
recipe is a parameterized executable instance of a skill that
fulfills a certain skill requirement. The process of matching the
skill requirements defined by the product to skills offered by
the equipment will result in the creation of a skill recipe [14].

Additionally, each DA has an execution table [16] that
stores the recipe execution sequence. The execution table
also contains recipe-product relations that define the set of
instructions to be executed for each specific product arriving
at a workstation. This serves as the basis for improvements by
the cloud optimization methods that may update the execution
tables and, thus, change the execution logic on-the-fly.

The following list of DA operational requirements was
defined for the reconfiguration phase:



• Semantic description of all elements should not only
contain the hardware structure of a connected compo-
nent and a list of its capabilities, but it also should
be re-adjustable to accommodate the changes, occurring
in a system. This self-description is stored in the DA
in form of a file and follows a generally accepted
component description model. The proposed solution
utilizes AutomationML as a modeling language where
the engineering information is stored following object-
oriented principles. Such a description contains physi-
cal and logical production system components as data
objects encapsulating the different relevant information
aspects [18]. The device description follows the common
semantic model and describes not only the hierarchical
structure of a workstation or a transport unit but also
their skills, which can then be executed in order to fulfill
a production task. A device adapter self-description is
an aggregation of all lower-level components descriptions
that constitute a workstation.

• (Un)plugging a workstation/module requires the corre-
sponding DA and MSB adjustments including reflecting
the changes that happened in the self-description of a
workstation/module for traceability.

• DA standalone operation should be guaranteed even
if the connection to the optimization cloud is lost. The
production must not be stopped even if it is not run
optimally. The cloud, whenever it restores the connection,
can reconfigure the production scenario afterward.

• Switching a module from one workstation to another
should be possible in runtime. In this case, the system
after discovering a change readjusts itself.

• Creation of new recipes for atomic/composite skills,
editing recipes, and execution tables. It should be
possible to create new recipes or editing existing ones
in order to either execute new production sequences, e.g.
in the case of a new product or parameterize the existing
sequences, e.g. to produce another product variant.

• DA orchestration of composite skills should enable
a mechanism of on-the-fly reconfiguration of the skill
sequences.

• Runtime production adjustments can be either de-
manded by MSB or by the low-level device after exe-
cuting some process step depending on its outcome. An
example of the adjustments coming from the high-level
could be a hardware change in the system setup so that the
products need to be re-routed to another working station
to execute the whole process. An example of a later case
could be a product that should be processed differently
depending on a test result done by a workstation.

• Skill interlocking should provide a mechanism to buffer
the skill calls and execute in a queue, one after another.
This should be used when a composite skill sequence
contains a long-running process during the execution
of which the next recipe call can be already started.
Consider, for example, an AGV, which task is to bring
the products between a laser cutting, painting and gluing

stations. Assuming that the painting process takes some
time and is defined as a long-running, an AGV skills
execution logic can be modeled as follows (see Fig. 3):

– The AGV receives a call to bring a product from
laser-cutting station to a painting station and then to
a gluing station.

– While it executes the transport task between a laser
cutting and painting station, the next product arrives,
demanding the same AGV to bring it along the same
path.

– After the first product arrives at the painting station,
the AGV is able to start the second product execu-
tion, while the first part is painting. It comes back
to the laser cutting station, gets the second pruct and
transports it to the painting station. After arriving at
painting station the AGV unloads the second product
for painting and loads the first one, once it is ready.

– Finally, the AGV finishes the task for the first product
and then gets back to finish the second one.

This allows having a more flexible execution logic, which
at the end saves time and costs, and deals with complex
products.

• Scalability. The system should be scalable and cater
to the setups consisting of virtual and physical stations
running together.

Fig. 3. Skills interlocking example

V. IMPLEMENTATION

The developed demonstrator, introduced in Section III, con-
sists of eighteen simulated (four laser cutting, three painting,
two 3Dprinting, two gluing, six joining and one labeling) and
a real (gluing) workstations as well as seven simulated AGVs
(see Fig. 4). The AGVs can bring the material between any two
stations, without the restrictions of a fixed system, such as a
conveyor belt. Each workstation has its DA, responsible for the
system description and the corresponding skill execution. All



AGVs are controlled on the contrary by one DA introducing
a device management layer. This demonstrates an ability to
control multiple resources from single DA.

Fig. 4. Demonstrator Layout

All the communications between the workstations and the
MSB are done via OPC UA. The modeling capabilities of
OPC UA allow the devices to communicate the information
contained in the device description AutomationML files with
each other in the runtime. Each DA after starting up, reads
its own self-description file and generates an OPC UA server
out of it, following the OPC UA Companion specification
”AutomationML for OPC UA” [19] [18].

A. Semantic description of all elements
The self-description file for each device requires common

terminologies and concepts for both the Role Class and
Interface libraries of the AutomationML file [20]. The first
step for defining the self-description file is to create the generic
device description in the system unit class library and initialize
the available skill types and interfaces. Once this is done,
one can simply create an instance of a generic device in the
Instance Hierarchy to define the specific device. This node
is communicated to the next hierarchical level where it is
aggregated, and so on until reaching the highest level of
granularity (workstation or transport). It is also important to
note that a device description has approved recipes that can be
used to fulfill requirements, from both products and composite
skills.

Each skill has a state machine that identifies if the skill is
either in Ready, Executing or Error state. The MSB, before
triggering a skill, checks if the DA is ready for execution and,
if so, triggers the production. All the information, defined in
AutomationML description is passed up to the cloud-based
system towards having a virtual representation of an I4.0-
compliant component.

Overall, this enables an automatic generation of the exe-
cutable skills that can be triggered via OPC UA out of the
AutomationML system description.

B. (Un)plugging a workstation/module
Re-configuration requires the detection of newly plugged

in devices and downtime of already registered devices. To be

able to detect new devices on the network, it is required to
implement a discovery mechanism for OPC UA servers. The
OPC UA specification [21] describes the necessary OPC UA
services for the automatic discovery of other OPC UA servers
on the network. The concept of using Local Discovery Servers
with Multicast Extension (LDS-ME) was previously described
in [22].

LDS-ME provides basic functionality to find other OPC UA
servers on the network using multicast DNS [23]. As soon as
a new device is plugged in, it announces itself on the network.
Within seconds all other LDS-ME servers on the network are
notified. We are using this announced information to forward
it to the DA implementation, which can handle new devices
correspondingly.

One major issue in this implementation is the detection
of device unplugging or shutdown. If a device is suddenly
offline, the DA on the other end should be able to discover
this new state and either redirect tasks to other devices or
notify the MSB about the missing device. A device may
become offline due to different reasons. It may simply be
shut off in a graceful way by, e.g., using the device’s user
interface. In this case, the device is still able to unregister
itself from other DAs. If the device has a hard failure or the
network connection is interrupted, the device can not send an
unregister message, therefore other devices need some kind of
heartbeat implementation to detect this downtime. The OPC
UA specification defines a timeout of 10 minutes: if a device
does not send a new register request every 10 minutes, it
should be removed from the known devices. This interval of 10
minutes can be quite high for specific use-cases. Therefore we
implemented an extension to the OPC UA discovery process
which is able to detect a device downtime within less than a
second.

This is achieved by implementing an additional heartbeat
communication channel via User Datagram Protocol (UDP).
As soon as a device registered itself with another DA, an
additional heartbeat connection is opened, where both devices
send a heartbeat every 250 milliseconds. It is necessary to use
UDP since Transmission Control Protocol (TCP) communi-
cation is bound to a specific connection where messages are
automatically cached by the operating system. If one of the
two ends does not receive a new heartbeat message within 600
milliseconds, the network connection is defined as broken. In
this case, the OPC UA discovery process is notified about
the lost connection. The DA implementation will then be
notified through the same API as if the device would unregister
itself. Reusing the OPC UA discovery interface allows us
to transparently implement the heartbeat and adapt it to the
requirements of the corresponding network connection.

C. Switching a module from one workstation to another

A heartbeat mechanism described above can be used for
example in the following scenario: if a module that provides
an auxiliary functionality is shared between two workstations,
its presence at one workstation and absence at another can
be automatically detected. For instance, in our demonstrator,



Fig. 5. Device adapter functionality to support dynamic reconfiguration

a painting station can have a quality checking camera that
can be connected either to one or another virtual gluing
workstation. It monitors only one workstation at the same
time, therefore, whenever, it is connected to a workstation,
this workstation provides not only Gluing skill but also
GluingWithQualityCheck skill, whereas another gluing
workstation is only capable of Gluing. Whenever the LDS-
ME server of the workstation DA detects a newly registered
camera server, it extends its description with the skills defined
in the camera’s self-description file and communicates the
new capabilities to the MSB by triggering it, notifying the
changes done in the workstation setup (see Fig. 5). The
MSB re-browses the OPC UA namespace of the DA and
gets the information about newly available skills. Reversely,
if the device is unplugged after the heartbeat detects it, it is
communicated to the higher-level OPC UA LDS-ME server,
the device is unregistered and its functionality is removed from
the corresponding workstation. The MSB is notified again and,
after re-browsing the workstation DA namespace, it adjusts
correspondingly.

D. Creation of new recipes for atomic/composite skills, editing
recipes and execution tables

The device description for a workstation, which is created
during the Engineering Phase contains a predefined set of

the atomic skills, provided by the devices that constitute a
workstation and some composite skills for the production
processes known at the engineering time. However, agile
manufacturing demands the mechanisms that allow to rapidly
react to the changes in the production tasks, happening while
the system is in operation. That requires the scenarios where
either the existing production sequences are changed or new
composite skills are introduced. This includes the parameter
editing of existing sequences, for example, to execute a new
product variant (having a new case color). Moreover, it is
possible to create new combinations of skills to produce a
completely new product, for example, an electronic device
without a casing (in our demonstrator this will mean omitting
the 3DPrinting skills). In this case it is essentially important to
keep the documentation up-to-date, saving all new parameters
and newly created skills. Therefore, once a new composite
skill or an edited skill is sent to a DA either via the system
Human-Machine Interface (HMI) or from the higher-level
Manufacturing Execution System, the DA is updating its
AML description, writing back new parameters and/or new
composite skill steps. Afterward, it generates a new OPC UA
server out of it exactly as it does it during the startup and
notifies the MSB about the changes being made so that the
upper control level can re-browse the new data and get the
executed updates. The overall process is shown in Fig. 5.



By doing it that way, the information is kept up-to-date on
each level of the running system. If the module fails for some
reason, after its restarting, it will appear in the system with
the last working configuration, without need to parameterize
the module again manually.

E. DA standalone operation

After the MSB gets the initial process configuration from
the cloud or system HMI, it deploys the configuration down
to the device adapters. If then the connection to the cloud is
broken, the DA continues its operation executing the existing
recipes and ensuring the system operation even without the
cloud connection. Thus, the agent cloud can be seen optional
for the system operation, however, its presence is crucial for
the system optimization and constant improvement.

F. Runtime production adjustments

This is a mechanism needed for the on-the-fly recipes
configurations when the whole composite recipe should be
changed in response to the process outcome during the execu-
tion. As an example for this use-case serves a quality check
scenario, when a camera at the gluing station detects a defect
in a gluing process, the gluing station DA gets this information
and should be able to change the following sequence of the
composite recipe execution in order to stop the production of
the affected part. To implement such a scenario, the execution
tables contain a list of possible next recipes to execute. The
DA, based on the process outcome, can then choose the next
recipe to execute from this list and notify the MSB about
the next process steps by writing the chosen recipe to the
NextRecipeToExecute column in the execution table (see
Fig. 6). This allows us to deal with the product quality checks
scenarios, namely if during the production the product fails
some quality test and could be then sent again to the previous
workstations in order to be reworked if that is possible.

Fig. 6. Runtime adjustments using device adapter execution table.

G. Skill interlocking

As it is described earlier in Section IV requires a semaphore-
like mechanism for the skill execution logic. The skill thread
using the same resource must wait until the semaphore’s
value is positive, then change the semaphore’s value by
subtracting one from it. When it is finished the thread changes
the semaphore’s value by adding one to it. To realize this,
we add a separate LongRunningProcess state to the skill
state machine that identifies a long-running process in a
composite skill. While executing such a lingering skill, the
other resources, responsible for the skill executions, can be
released for executing another skill calls. We add a buffer of
the skill calls, where we store the limit number of the skill
calls that are arriving, while the other skill instance is already
executing, blocking the immediate execution of the next call.
Additionally, we add a semaphore variable that is controlling
the number of skills using the resource. In the example in
Fig. 3 the overall interlocking functionality works as follows:

• Product1 triggers the execution of the task recipe. The
task consists out of laser-cutting, then transporting the
product to the painting station, then painting, transporting
the product to the gluing station and, finally, gluing.
For simplicity, we assume that in this example there is
only one AGV, which is responsible for transporting the
products between the stations.

• When Product1 is executing the recipe, it decrements
the semaphore value, setting it to zero, identifying that it
will block for its execution the AGV resource.

• While Product1 is executing, the next call for Product2
arrives, but, since there is no free resource available and
the semaphore value is not positive, this call is saved in
a buffer queue.

• When Product1 arrives at the painting station, which
is defined as a long-running skill, the state ma-
chine of the highest-level Task skill is set to the
LongRunningProcess state and releases all other re-
sources, responsible for this composite skill execution,
incrementing their semaphore values.

• After the AGV is released, it reads the next skill call,
which is stored in the buffer queue and executes the
Product2, bringing it from the laser-cutting to the paint-
ing station. Product2 takes the semaphore and releases
it as soon as the product arrives at the painting station.

• As Product1 is ready to leave the painting station, it
blocks the AGV again by decrementing the semaphore.
Then the process is finished for the Product1 at the
gluing station and AGV brings the second product to
finish the executed task for it as well.

This interlocking mechanism is especially useful for trans-
port skills as it is shown in Fig. 3. Note, that we additionally
restrict the interlocking to be executed only if the product
types that require the same skill execution is the same to avoid
bottlenecks in the skill queues. That means that interlocking
is only possible for the products of the same types that need
the same skill sequences to be executed. The type check is



done via the ProductTypeIdentifier that is specified in the
product description AutomationML file.

H. Scalability

The demonstrator includes 20 DAs running in parallel and
communicating with each other over the MSB. Even though
in this case all DAs are running on a similar hardware
platform, the other project demonstrators successfully proved
the concept of running the same wrapper code on top of
multiple various control-level devices [14].

VI. CONCLUSION

In this paper, we demonstrated how a device adapter, a
software wrapper that enables an integration of the automa-
tion devices – both brown- and green-field – into the agile
production environments. We have put the strong operational
requirements in order to achieve the required level of flexibility
in the use-case scenarios. As a result, we have implemented the
demonstrator that simulates an agile production line consisting
of a relatively large number of the workstations, having
a complex transportation system and producing a complex
product with multiple variants. We have shown that the DA
supports the overall system flexibility on the component level
by keeping the system description updated, allowing dynam-
ical device discovery mechanism, reattaching the modules
and switching them between different workstations, supporting
software reconfiguration, runtime product adjustments, and
complex execution scenarios. It is worth to mention that the
performance tests comparing the openMOS approach with the
legacy systems showed that the overhead in the production
throughput is not more than 1.5% [15] of the production cycle.

We have implemented the DA using the AutomationML for
the engineering phase and OPC UA for the runtime phase.
The prototype implementation is open sourced1. It contains
not only the DA source code but also the examples of the
AutomationML models for several workstations.

REFERENCES

[1] V. Vyatkin, “Software engineering in industrial automation: State-of-the-
art review,” IEEE Transactions on Industrial Informatics, vol. 9, no. 3,
pp. 1234–1249, Aug 2013.

[2] D. Wünsch, A. Lüder, and M. Heinze, Flexibility and Re-configurability
in Manufacturing by Means of Distributed Automation Systems an
Overview, 2010.

[3] M. Mehrabi, A. Ulsoy, and Y. Koren, “Reconfigurable manufacturing
systems: Key to future manufacturing,” Journal of Intelligent Manufac-
turing, vol. 11, 08 2000.

[4] A. Perzylo, S. Profanter, M. Rickert, and A. Knoll, “OPC UA NodeSet
Ontologies as a Pillar of Representing Semantic Digital Twins of
Manufacturing Resources,” in Proceedings of the IEEE International
Conference on Emerging Technologies And Factory Automation (ETFA),
Sep. 2019.

[5] J. Bernshausen, A. Haller, T. Holm, M. Hoernicke, M. Obst, and
J. Ladiges, “Namur Modul Type Package Definition,” atp magazin,
vol. 58, no. 01-02, pp. 72–81, 2016.

[6] International Electrotechnical Commission (IEC, “Engineering data ex-
change format for use in industrial automation systems engineeringAu-
tomation Markup LanguagePart 1: Architecture and general require-
ments, , International Standard, Rev. 2.0, IEC 62714-1,” International
Electrotechnical Commission (IEC, Tech. Rep., 2018.

1https://github.com/openMOS/deviceAdapter

[7] S. Wassilew, L. Urbas, J. Ladiges, A. Fay, and T. Holm, “Transformation
of the NAMUR MTP to OPC UA to allow plug and produce for modular
process automation,” 09 2016, pp. 1–9.

[8] W. Lepuschitz, A. Zoitl, M. Valle, and M. Merdan, “Toward self-
reconfiguration of manufacturing systems using automation agents,”
Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE
Transactions on, vol. 41, pp. 52 – 69, 02 2011.

[9] “Structure of the Administration Shell. Continuation of the
Development of the Reference Model for the Industrie 4.0 Component.”
accessed: 2019-03-20. [Online]. Available: https://www.plattform-
i40.de/I40/Redaktion/EN/Downloads/Publikation/structure-of-the-
administration-shell.pdf? blob=publicationFile&v=5

[10] Y. Koren, U. Heisel, F. Jovane, T. Moriwaki, G. Pritschow, G. Ulsoy, and
H. Van Brussel, “Reconfigurable manufacturing systems,” CIRP annals,
vol. 48, no. 2, pp. 527–540, 1999.

[11] Y. Koren, The global manufacturing revolution. Product-Process-
Business Integration and Reconfigurable Systems, 2010.

[12] J. Pfommer, M. Schleipen, and J. Beyerer, “Configuration model for
evolvable assembly systems,” in IEEE 18th Conference on Emerging
Technologies & Factory Automation (ETFA), 2014.

[13] P. Ferreira and N. Lohse, “Configuration model for evolvable assembly
systems,” in 4th CIRP Conference On Assembly Technologies And
Systems, 2012.

[14] K. Dorofeev, C.-H. Cheng, M. Guedes, P. Ferreira, S. Profanter, and
A. Zoitl, “Device Adapter Concept towards Enabling Plug&Produce
Production Environments,” in Proceedings of the IEEE International
Conference on Emerging Technologies And Factory Automation (ETFA),
Sep. 2017.

[15] F. Miranda, R. Martins, K. Dorofeev, V. Gentile, P. Ferreira, and
M. Guedes, “Towards a Common Manufacturing Service Bus to Enable
Flexible Plug-and-Produce Automation,” in ISR 2018; 50th International
Symposium on Robotics, Jun. 2018.

[16] P. Danny, P. Ferreira, K. Dorofeev, and N. Lohse, “An Event-Based
AutomationML Model for the Process Execution of Plug-and-Produce
Assembly Systems,” in IEEE 16th International Conference of Industrial
Informatics (INDIN), Jul. 2018.

[17] T. Arai, Y. Aiyama, Y. Maeda, M. Sugi, and J. Ota, “Agile assembly
system by plug and produce,” CIRP Annals-Manufacturing Technology,
Dec. 2000.

[18] M. Schleipen, A. Lüder, O. Sauer, H. Flatt, and J. Jasperneite, “Re-
quirements and concept for Plug-and-Work,” Automatisierungstechnik,
vol. 63(10), pp. 801–820, Jun. 2015.

[19] “Companion Specification AutomationML for OPC
UA,” accessed on 2019-03-25. [Online]. Available:
https://opcfoundation.org/news/opc-foundation-news/bridging-the-gap-
between-communication-and-semantics-for-industrie-4-0-companion-
specification-automationml-for-opc-ua/

[20] “Whitepaper AutomationML Part 1 - Architecture and general re-
quirements.” [Online]. Available: {https://www.automationml.org/o.red/
uploads/dateien/1417686950-AutomationML%20Whitepaper%20Part%
201%20-%20AutomationML%20Architecture%20v2 Oct2014.pdf/}

[21] OPC Foundation, “OPC UA Specification Part 12: Discov-
ery,” OPC Foundation, Tech. Rep., 2015. [Online]. Avail-
able: https://opcfoundation.org/developer-tools/specifications-unified-
architecture/part-12-discovery/

[22] S. Profanter, K. Dorofeev, A. Zoitl, and A. Knoll, “OPC UA for Plug &
Produce: Automatic Device Discovery using LDS-ME,” in Proceedings
of the IEEE International Conference on Emerging Technologies And
Factory Automation (ETFA), Limassol, Cyprus, Sep. 2017.

[23] S. Cheshire and M. Krochmal, “Multicast DNS,” Internet Requests for
Comments, RFC Editor, RFC 6762, February 2013, accessed on 2019-
03-25. [Online]. Available: http://www.rfc-editor.org/rfc/rfc6762.txt

View publication statsView publication stats

https://www.researchgate.net/publication/334164343

