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Abstract

In robotics it is more and more essential to understand the surrounding environment.
A great advantage is that nowadays almost every object is modelled by a CADmodel
somewhere in a database. But robots don’t yet have the ability to infer properties
of these CAD models. So the idea behind this work is to combine these models with
understanding: A robot finds an unknown object in the scene and tries to match
the scanned point cloud data of the 3D object with a CAD model from a database
and analyses the CAD model to get additional information about the object, for
example wheter there is a handle or concave parts for carrying fluids.
Fitting CAD models to point cloud data is a mature field of research, so we focus
on segmentation and interpretation of CAD models. This bachelor thesis provides
some fundamental algorithms and approaches to do segmentation and semantic
interpretation of CAD models specially used in household.
Segmentation is achieved by fitting primitives (plane, sphere, cone and cylinder)
according to curvature values of each vertex. Afterwards the fitted primitives are
analysed to find holes, handles, containers or supporting planes.
Additionally we provide a Prolog interface for querying different properties of these
fitted primitives, for example area, volume or direction. We also provide some basic
Prolog predicates for querying supporting planes and handles. It is also possible
to define new predicates in Prolog to combine properties such as convex part and
cylinder with approximately perpendicular direction vectors as object with handle
which can carry fluids.
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Zusammenfassung

Im Bereich der Robotik wird es immer und immer wichtiger, die Umgebung so gut
wie möglich zu verstehen und mit dieser zu interagieren. Ein großer Vorteil dabei
ist, dass heutzutage fast jedes Objekt irgendwo als 3D Modell vorhanden bzw. abge-
speichert ist. Es existieren bereits verschiedene Ansätze, bei denen Roboter in der
Lage sind, diese Modelle in die Umgebung einzupassen. Diese Algorithmen sind
jedoch noch nicht in der Lage, semantische Eigenschaften dieser Modelle autonom
zu bestimmen. Dieses Problem versuchen wir zu lösen, indem wir dem Roboter die
Fähigkeit geben, das dazugehörige Objektmodell automatisch zu suchen und dieses
dann zu analysieren, um zusätzliche Informationen wie Griffe oder konkave Teile
zu finden, welche z.B. Flüssigkeiten beinhalten könnten.
CAD Modelle in 3D Punktewolken einzupassen wird bereits ausgiebig erforscht.
Deshalb legen wir den Schwerpunkt auf die Segmentierung und die semantische
Interpretation dieser Modelle. Diese Bachelorarbeit behandelt einige grundlegende
Algorithmen und Ansätze, um speziell im Haushalt verwendete Modelle zu segmen-
tieren und zu analysieren.
Die Segmentierung wird dadurch erreicht, indem primitive Objekte (planare
Flächen, Kugeln, Kegel, Zylinder) basierend auf die Krümmung des Modells
eingepasst werden. Diese primitiven Objekte werden anschließend verwendet, um
Löcher, Behälter, Griffe oder gerade Flächen zum Abstellen anderer Objekte zu
finden.
Zusätzlich stellen wir eine Schnittstelle zu Prolog zur Verfügung, um verschiedene
Eigenschaften der eingepassten primitiven Objekte, wie z.B. die Fläche, das Volu-
men oder die Richtung abzufragen. Außerdem sind weitere Prädikate definiert,
die es erlauben, tragende Flächen oder Griffe zu finden. Es ist auch möglich,
neue Prädikate zu definieren, welche verschiedene Eigenschaften kombinieren und
dadurch neues Wissen schaffen.
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1 Introduction

Robots find more and more the way into our life. To interact with our environment
they have to understand what’s around them. If there is a cup, the robot has to
know that the cup is a container for fluids and has a handle where you can pick it
up. Or if the robot holds something in its hands it has to know where the item can
be put down without falling over. A robot should also be able to interact with an
unknown environment, for example if the robot is placed in a room where it never
was before and needs to cook something, how does it know (besides the recipe and
action planning) where different objects in the kitchen can be picked up or which
object is for stiring a soup?
These tasks are normally solved by analysing point cloud data from laser scanners.
Analysing means segmenting the whole point cloud data in separate objects and
try to reason about each object. But point cloud data is noisy and inaccurate
especially for small objects and normally you can’t be sure that everything is
segmented correctly. In addition the range scanner only delivers data on visible
parts of an object, the hidden parts remain undiscovered. Therefore you have
missing information: maybe it is a cup but the robot sees only the body of the cup
and the handle is hidden behind it, so the robot thinks it is a glass or something
else.
To improve this task a robot can determine the shape of the object and compare it
with already known objects in his database or a database on the world wide web.
There is already a huge amount of CAD models from a lot of different sources: the
most known 3D model database is from Google called 3D Warehouse 1. Additional
useful databases are: 3D-Net 2, Autodesk 123D 3, 3DModelFree 4, Archive3D 5 or
the commercial database with high quality models from TurboSquid 6. There is
also a Robot Operating System (ROS, [Quigley et al., 2009]) module called “ROS
household objects” which is a collection of different household objects. Also a lot
of companies (for example KARE Design) already provide public databases of
their products. These database items are mostly CAD models drawn by humans

1http://sketchup.google.com/3dwarehouse/
2http://3d-net.org/
3http://www.123dapp.com/
4http://3dmodelfree.com/
5http://archive3d.net/
6http://www.turbosquid.com/
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1 Introduction

and are much more accurate than point cloud data. But finding a match isn’t
enough, because a CAD model is nothing else than a more accurate and complete
representation of the object as point cloud data. So the model doesn’t yet provide
any additional information how to handle or use the object.
For doing reasoning on such models we first need a simpler representation of these
models. So finding CAD models and segmenting them is a means to an end.
There is already a framework for finding the corresponding object of point cloud
data from a 3D CAD model database published under the name “3D-Net” 7.
Therefore the methods for finding and fitting models into point clouds aren’t
part of this work. Instead we try to gather information out of cad models for
semantic interpretation. For example we detect the parts of an object or geometric
properties and make them available to the robot. We get information of such
models by segmenting them into primitive types: sphere, cone, cylinder and plane.
Fitting primitives is done by calculating the curvature at each vertex and combine
faces by region growing which have same curvature values. The curvature property
also indicates which of the primitives the face corresponds to. When all faces
are elaborated we try to find for each primitive the properties such as radius or
height by least squares fitting. With these properties of each primitive we can do
further reasoning, for example calculating the volume or area of an object, finding
supporting planes or finding holes in an object.

An example for using these properties is a spoon: the robot mostly isn’t able
to determine its exact shape with 3D laser scanners. So it can try to find a
corresponding CAD model in a database and reason about it. As you can see in
Chapter Evaluation, the robot finds a concave part on the spoon and a cylinder
which represents the body and handle. With this information a robot knows much
more about an object.
Another example may be to find the handle of an object, for example a knife, a
bottle or a glass (as shown in Chapter 6 Evaluation) or finding supporting planes
of an object to put another object onto it. It is also possible to determine the pose
for two objects, a screw and a screw nut, to stick them together by aligning both
axes to same direction.
Or another use case is the selection of appropriate objects from a table: If the
robot has the task to stir soup and on a table are different tools such as knife, fork
and spoon, the robot can analyse the models and finds out that the spoon has the
biggest concave part, so it would take the spoon instead the fork. Or if the task is
to carry one litre of water to some place, the robot can analyse the volume of each
object and take the one, where at least one litre fits in.

7http://3d-net.org/
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1 Introduction

A Prolog interface is provided for getting this information efficiently. Another
great advantage is that the robot doesn’t need to know what object it is exactly.
For example if the model contains a part of a sphere and a cylinder or cone
perpendicular to it, the robot can infer that the object can be held at the cylinder
and a special amount of fluid can be carried with it. So the robot only needs
abstract knowledge about such objects.

At the end of this work we show segmentation results on a few cad models and
evaluate our algorithm on a diverse set of CAD models representing different
classes of objects commonly encountered by service robots, such as pieces of
silverware, cooking utensils, furniture items, as well as mechanical parts like nuts
and bolts. Here you can also see the strengths and weaknesses of our approach.
Additionally some suggestions are given how this new knowledge can be integrated
into robot knowledge processing, in our example within Knowledge Processing for
Autonomous Robots (KnowRob [Tenorth, 2011]).

The Implementation of algorithms described in this paper are available as ROS
package integrated into KnowRob on http://www.ros.org/wiki/knowrob_mesh_
reasoning.

1.1 Reader’s Guide

Chapter 1 Here you get an overview for what mesh segmentation and semantic
interpretation can be used in field of robotics and automation. We summarize
also shortly the content of this elaboration.

Chapter 2 Different approaches in mesh segmentation are discussed, especially
segmentation by curvature which we us in our work. Additionally we give a
short overview of papers trying to find mesh affordances. There exist also dif-
ferent grasp frameworks for determining the best grasp position of an object.

Chapter 3 A basic algorithm to fit primitives like sphere, cone, cylinder and planes
into a CAD model is described in this chapter. For fitting these primitives we
use curvature estimation.

Chapter 4 After fitting the primitives, they are used to detect container (e.g.
cylinder with a plane on the bottom) or other interesting parts of a CAD
model. This information can also be used to get the dimension of a supporting

3
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1 Introduction

plane or the volume of a container so that the robot knows how much tee fits
in the cup.

Chapter 5 The main part of this work is to integrate the new knowledge into
a knowledge representation system for the robot. Here we use “KnowRob”
[Tenorth, 2011] in combination with Prolog for reasoning on primitives and
getting information out of CAD models.

Chapter 6 As an overview of how accurate or inaccurate our algorithm is, we
applied it to different models. Here we discuss why on some of them the
algorithm worked quite good and on others not as desired.

Chapter 7 As conclusion we discuss the weaknesses and limitations of our ap-
proach and some future improvements for primitive fitting and reasoning.
Here you get also an overview which parts of this work were the most chal-
lenging.

4



2 Related Work

In this chapter some related work on mesh segmentation and semantic interpreta-
tion of 3D data is presented. A lot of papers already focus on mesh segmentation
with different approaches. But in the field of semantic interpretation of 3D data
there are quite few publications available. The semantic interpretation builds on
the results of mesh segmentation and is therefore dependent on the quality of the
segmentation algorithm.
There exist also different Frameworks for finding the best grasping position of ob-
jects.

2.1 Mesh segmentation

Mesh segmentation is mostly used in computer graphics with applications in areas
such as modelling, compression, 3D shape retrieval, collision detection and a lot
more. Therefore many algorithms have already been developed for segmenting 3D
data. Segmentation algorithms can be divided into two main classes: Feature-based
detection and Direct segmentation [Attene, Katz, et al., 2006]. These algorithms
focus on natural shapes like a hand or bodies of humans or animals. A few of them
also deal with segmentation of artificial shapes like CAD models [Attene, Katz, et
al., 2006; Bénière, Subsol, Gesquière, Le Breton, and Puech, 2011]. A comprehensive
study on mesh segmentations gives [Attene, Falcidieno, and Spagnuolo, 2006] or
with additional different approaches [Agathos, Pratikakis, Perantonis, Sapidis, and
Azariadis, 2007].

Feature-based detection A feature based detection [Katz, Leifman, and Tal,
2005] tries to find feature lines like folds in triangle meshes (edge where prin-
cipal curvature exceeds a prescribed threshold). Using this detection mode
typically results in gaps at the boundaries of regions and makes it therefore
difficult to avoid fuzzy boundaries.

Direct segmentation Instead of finding boundaries, direct methods start with
adjacent faces or neighbouring points. Region growing algorithms take some

5
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seed points and expand each region according predefined criteria. Here the
main difficulty is to select good initial seeds and growing criteria.
Hierarchical mesh segmentation [Attene, Katz, et al., 2006] doesn’t need initial
seeds. Here the smallest unit, a triangle face, is taken and adjacent triangles
are added hierarchically. Then primitives (plane, sphere, cylinder) are fitted
to each new generated face. Another hierarchical based face clustering is
presented in [Garland, Willmott, and Heckbert, 2001]. [Bénière et al., 2011]
uses curvature values of each vertex to best fit planes, cylinders, cones and
spheres into the model. Recovering primitives is also possible from point cloud
data [Mehtap, 2010] but is not yet as accurate as using CAD models data.
Segmentation of 3D point clouds in combination with learning algorithms is
also handled in [Tombari, Di Stefano, and Giardino, 2011; Tombari and Luigi,
2011].
The most recent work on mesh segmentation used for robot manipulation was
published in March, 2012: [Lee, Yoo, Kim, and Lee, 2012].

2.1.1 Curvature Estimation

We use curvature estimation for segmenting the mesh into sub meshes and for
fitting primitives. The most popular work on curvature estimation is [Gold-
feather and Interrante, 2004]. This paper also compares different methods like
Normal Curvature Approximation Method, Quadratic Surface Approxima-
tion Method and Adjacent-Normal Cubic Approximation Method. [Xiaopeng
Zhang, Hongjun Li, and Zhanglin Cheng, 2008] gives a good introduction in
calculating curvature from points around a normal vector similar to [Zhihong,
Guo, Yanzhao, and Lee, 2011] where the per vertex curvature is calculated
by taking a weighted average of per triangle curvature. The problem with
most of these algorithms is, that they rely on an equally distributed size of
the triangles.
In [Szlivási-Nagy, 2006] the curvature is estimated by drawing up circles
around a specific point and finding the minimum and maximum distance to
the triangles intersecting this circle.
[Rusinkiewicz, 2004] uses a weighted average of the normal vectors of faces
touching a vertex for estimating curvatures and the derivatives. This method
is used in this work and will therefore be described in detail in section 3.2.

6
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2.2 Semantic Interpretation

Semantic annotation and interpretation is not as popular as computer
graphics but is getting more and more important in the field of robotics and
artificial intelligence. Therefore this field is not yet as much explored as the
field of mesh segmentation.
Semantic interpretation means that the machine or robot knows the func-
tionality and meaning of an object or a specific part of it. [Attene, Robbiano,
Spagnuolo, and Falcidieno, 2009] does a pre segmentation of shapes and
needs a human to specify the semantic relationship between the segments.
Finding affordances like containment (the object can contain other objects),
liquid-containment (the object can contain liquids), unstable (the stability of
the pose is compromised if pushed), stackable-onto (objects can be stacked
onto the object) or sittable (an agent can sit on it like a human would do)
based on the pose in the scene is described in [Aldoma, Tombari, and Vincze,
2012].

The following publications and frameworks especially focus on grasping ob-
jects, which is also part of our work, by finding handles in CAD models:
In [Dag, Atıl, Kalkan, and Sahin, 2010] categorizing objects and their prop-
erties is achieved by simple interaction with objects in the environment. Here
the agent can categorize objects based on the predicted effects of actions that
can be applied on them.
The Grasp project’s 1 aim, funded by the European Commission, is the design
of a cognitive system capable of performing grasping and manipulation tasks
in open-ended environments, dealing with novelty, uncertainty and unforeseen
situations.
Another similar grasp pipeline is described in [Ciocarlie et al., 2010] which
combines aspects such as scene interpretation from 3D range data, grasp plan-
ning, motion planning, grasp failure identification and recovery using tactile
sensors.
Grasping based on primitives like cylinders and spheres is presented in
[Nieuwenhuisen, Stückler, Berner, Klein, and Behnke, May 2012]. These prim-
itives are detected by approximating surface normals with predetermined pa-
rameters. In comparison to our work, they use their inaccurate fitted primi-
tives only for grasping tasks, not for further reasoning such as volume calcu-
lation or finding supporting planes.
3D-Net 2 is another framework for grasping objects with integration into Point

1http://www.csc.kth.se/grasp/
2http://3d-net.org
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Cloud Library (PCL 3). 3D-Net tries to match CAD models from a database
into point cloud data and analyses the grasping position on the matched CAD
model.

3http://pointclouds.org/

8
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The basic structure of our application is based on the structure of the Apache
Unstructured Information Management Applications (UIMA, 1) project (see Sec-
tion 3.1). The segmentation is achieved by analysing the curvature of each vertex
(Section 3.2) and creating sub meshes for fitting primitives (Section 3.3).

3.1 Application structure

The Apache UIMA project is a collection of frameworks, tools and annotators for
analysis of unstructured content such as text, audio and video.
UIMA can be seen as box which holds all the parts for analysing the unstructured
data together.

UIMA is a software architecture which specifies component interfaces,
data representations, design patterns and development roles for creating,
describing, discovering, composing and deploying multi-modal analysis
capabilities. [http://uima.apache.org]

For explaining the basic structure of UIMA we use the following example (for a
complete explanation please refer to http://uima.apache.org):
3D mesh data is simply a collection of vertices which, when connected, result in
a collection of triangles. Compared to text, a triangle can be a single character.
Segmenting these parts is the same as splitting a sentence without spaces like
“QuestoÈUnaCasaGrande” into “Questo È Una Casa Grande”. This can be done
because you know that each word begins with a capital letter. But you don’t
know yet the meaning of this sentence. The next step is to semantically analyse
(translate) the parts of the sentence to get “This is a big house”. Additionally you
may have a picture of the house. By analysing the picture, an algorithm comes to
the same conclusion that the house is big.
In the view of UIMA, the collection of raw data (Italian sentence, image) and

1https://uima.apache.org/
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3 Segmentation

the translated sentence/interpreted picture is called Common Analysis Structure
(CAS). The sentence and image are called document. An Analysis Engine (AE) is
composed to analyse a single document, so in our example there is a Splitting AE,
Translating AE and an Image Processing AE.
Additionally UIMA supports multiple views of a document: e.g. the whole
sentence or only a single word. An Analysis Engine analyses one or more views
of a document. Therefore these views are called Subject of Analysis (SOFA). An
Analysis Engine produces Annotations on a specific span of the input: each word
is an annotation (the annotation contains the start index and end index of the
word in the string), the house in the image is also an annotation (the annotation
contains the pixels which represent the house). These annotations are stored in
the CAS container.
An annotation may be of a specific Type like Word or ImagePart. Types have
properties called Features. So for example LengthOfWord may be a Feature.

This principle is mapped in the edu.tum.sc.uima package. The
classes within this package are base classes for each analyser and
annotation in the package edu.tum.cs.vis.model.uima.analyser,
edu.tum.cs.vis.model.uima.annotation and edu.tum.cs.vis.model.uima.cas.
MeshCas.java is the class definition for the CAS containing a full CAD model and
all annotations regarding this model. The different analyser and annotations are
explained in the following sections.

3.2 Curvature estimation

The curvature values of a vertex are used to determine the curvature on the
surrounding area for segmenting the mesh into flat, convex or concave parts. These
parts are then fitted with primitives for further analysis. Different methods exist for
estimating the direction and magnitude of the minimum and maximum curvature.
In this work we use the method by [Rusinkiewicz, 2004] because it can be used for
irregular triangle meshes and approximates the curvature with very small errors.
Additionally the user doesn’t have to specify the size of neighbourhood which will
be analysed for curvature.
The normal curvature kn of a surface in some direction is the reciprocal of the radius
of the circle that best approximates the surface in this direction. The curvatures
in minimum and maximum direction are also called principle curvatures k1 and
k2 with the corresponding principle directions. There exist also methods that

10



3 Segmentation

estimate only the mean curvature H = (k1 +k2)/2 or Gaussian curvature K = k1k2.

3.2.1 Finding vertex normals

The first step is to calculate for each triangle vertex the vertex normal (see Figure
3.1).

Figure 3.1: Vertex normals for a rounded model. A specific coordinate may have more
than one normal vector because there are multiple vertices at this coordinate but of different
faces.

11
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This is done with Algorithm 1.

Algorithm 1: Calculate vertex normals as shown in figure 3.1
for all triangles in mesh do
e1← pos1− pos0 {calculate triangle edge vectors}
e2← pos1− pos2
e3← pos2− pos0
if length of a vector ei is null then
continue with next triangle

end if
facenormal← e2× e1 {Direction of normal vector of face, NOT normalized}
normal(pos0)← normal(pos0) + facenormal.scale(1/(len(e1) ∗ len(e3)))
normal(pos1)← normal(pos1) + facenormal.scale(1/(len(e1) ∗ len(e2)))
normal(pos2)← normal(pos2) + facenormal.scale(1/(len(e2) ∗ len(e3)))

end for
for all vertices in mesh do
normalize vertex normal

end for

3.2.2 Voronoi Area

To calculate the curvature at a specific vertex we need to know how much of the
face curvature should be accumulated at each vertex. For this weight we use the
area belonging to each vertex, defined as Voronoi Area restricted to the 1-ring of a
vertex (see Figure 3.2).
The method and formula for computing the Voronoi Region Area for a vertex is
given in the chapter “3.3 Voronoi Region Area” in [Meyer, Desbrun, Schröder, and
Barr, 2002].

3.2.3 Principle direction and curvature

The next step is to create an initial orthogonal coordinate system (n, up, vp) for
each vector by setting the principle direction vectors at each vertex to the two axes
perpendicular to the face normal n.

12
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Figure 3.2: Voronoi area of each vertex. The Voronoi Area is indicated by the size of
each sphere at the top of vertex normals (Figure 3.1).

For getting the curvature of a triangle we need the second fundamental form II,
which is defined in terms of the directional derivatives 2 as:

II =
(
Dun Dvn

)
=
(

∂n
∂u
· u ∂n

∂v
· u

∂n
∂u
· v ∂n

∂v
· v

)
(3.1)

, where (u,v) are the directions of an orthonormal coordinate system in the tangent
frame of the face.
Multiplying II by any vector on the tangent plane gives the derivative of the normal
in that direction IIs = Dsn. This derivative of a normal is itself a vector on the
tangent plane.

2http://mathworld.wolfram.com/DirectionalDerivative.html
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3 Segmentation

With the second fundamental form we can form a set of linear constraints (see also
Figure 3.3)

II =
(
e0u
e0v

)
=
(

(n2 − n1)u
(n2 − n1)v

)
(3.2)

II =
(
e1u
e1v

)
=
(

(n0 − n2)u
(n0 − n2)v

)
(3.3)

II =
(
e2u
e2v

)
=
(

(n1 − n0)u
(n1 − n0)v

)
(3.4)

, which can be solved using least squares for getting the parameters of the
second fundamental form and from that the curvature tensor expressed in the
coordinate system (uf ,vf ) of the face. This curvature tensor must be averaged

e
0

2
n

e
1

e
2

1
n

0
n u

v

Figure 3.3: Normal vectors ni for each vertex and edge vectors ei of a triangle

with contributions from adjacent triangles. To do this, we use the coordinate
system (up,vp) of each vector (as defined previously) and project the face curvature
tensor to each vector by rotating (up,vp) to be coplanar to (uf ,vf ). The projected
curvature tensor gets then multiplied with the previously defined Voronoi area
weight and added to the minimum and maximum curvature for the corresponding
vertex.
After each face is elaborated, for each vertex the accumulated curvature tensor II
is divided by the sum of the Voronoi Area weights. Out of this curvature tensor
the principal directions and curvatures are calculated for the vertex by computing
eigenvalues and eigenvectors of II.

A summary of the steps for estimating the curvature for each vertex is given in
Algorithm 2. The result is shown in Figure 3.4.
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3 Segmentation

Algorithm 2: Calculate the principle curvatures and directions of each vertex
Compute per-vertex normals (see Algorithm 1)
Construct an initial orthogonal coordinate system (up,vp)
for all triangles in mesh do
Compute edge vectors ei and normal differences ∆n
Solve II using least squares
for all vertex p of the triangle do
Project II into (up,vp)
Add the projected tensor, weighted by wf,p t vertex tensor

end for
end for
for all vertices in mesh do
Divide the accumulated vertex tensor II by the sum of weights
Find principal curvature and directions by computing eigenvalues and
eigenvectors of II

end for

3.2.4 Colouring by curvature

By calculating a hue and saturation for each curvature value we have two advan-
tages: First, we are able to visualize curvature values graphically by colouring each
vertex according to it’s curvature (see Figure 3.5), Second, we have a compact
representation of the curvature which we can use for determining primitive types
(see Section 3.3).
For calculating hue and saturation we use the following formulas:

H = max+min

2 mean curvature
(3.5)

K = max ·min Gaussian curvature
(3.6)

hue = 4
3 |atan2(H2 −K,H2 · sgn(H))| (Get hue between 0 and 240 degree)

(3.7)

saturation = 2
π
atan((2H2 −K) · scale) (Saturation between -1 and 1

(3.8)
min and max are the minimum and maximum curvature values of each vertex.
scale can be used to saturate also small curved planes or only vertices with high
curvature. It is recommended to use scale depending on the total size of the model
(eg. use the smallest enclosing ball [Gärtner, 1999]).
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3 Segmentation

Figure 3.4: Principle curvature directions on a sphere and cylinder for each vertex. The
vectors indicating the direction are scaled by the curvature magnitude and coloured as blue
(maximum curvature) and orange (minimum curvature).

3.3 Fitting primitives

As introduced in the previous section we use estimated curvature values for fitting
primitives into an irregular triangle mesh. The main steps are: combine neighbour-
ing triangles with approximately the same curvature values to a new face and fit a
primitive to the new face based on the curvature properties. Due to the fact that
the curvature is estimated, combining the triangles may be inaccurate. Therefore
smoothing is used by including curvature properties of adjacent triangles. So the
first step is to find adjacent triangles for each triangle.

3.3.1 Finding neighbours

A neighbour of a triangle is a triangle which has exactly two vertices with identical
coordinates. A triangle has three sides so it can have maximum three neighbours.
For later elaboration the neighbours are stored as a bidirectional relation for each
triangle.
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Figure 3.5: Models coloured by curvature. red: convex sphere, green: concave sphere,
yellow: convex cylinder or cone, blue concave cylinder or cone, white: plane or flat surface.
The higher the saturation, the higher is the curvature value.

3.3.2 Combining faces with same curvature

For fitting primitives, faces with approximately the same curvature need to be
grouped into a bigger face. Grouping means to create a new annotation which
has all of the child triangles stored in an array. To decide if a triangle is part
of the same face as the neighbour, first all the vertices of the mesh are analysed
and according to its curvature features one of the following properties is assigned:
plane, sphere convex, sphere concave, cone convex, cone concave. A special
property for cylinder isn’t needed because a cylinder is a special form of a frustum
cone where both radii are equal.
The colour values of hue and saturation (see Subsection 3.2.4) are a good indicator
for the curvature property. Therefore we use the following table to assign to each
vertex a curvature property (remember that the saturation is between -1 and 1,
hue is between 0 and 240 degree):

plane saturation < 0.45
sphere convex hue < 35◦ (red)
cone convex 35◦ ≤ hue < 75◦ (yellow)

sphere concave 75◦ ≤ hue < 150◦ or hue ≥ 230◦ (green)
cone concave 150◦ ≤ hue < 230◦ (blue)

Now for each triangle the curvature property is assigned by taking the property
which most often occurs on the three vertices. If all of the vertices have different
properties the order of decision is plane,sphere convex, sphere concave, cone

17
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convex, cone concave. We choose this order because a face is most likely a plane,
then a sphere or if none of them a cone. The resulting property assignment is
shown in Figure 3.6(a). Now all the triangles which are direct neighbours (see
Section 3.3.1) and have the same curvature property assigned, will be combined
into bigger faces which are then called primitive annotations. This process is also
often called region growing. Each primitive annotation contains a list of triangles
and the according primitive type. As it can be seen in Figure 3.6(a), the result
contains a lot of small faces of different type (e.g. on the handle of the cup).
These small errors can be smoothed by iterating over each primitive annotation
and comparing the area of the current annotation to its direct neighbours. If the
current area is smaller than 5% the current annotation is merged into the bigger
one. This type of smoothing eliminates small annotations which should be part of
bigger ones (see Figure 3.6(d)).
Additionally it is possible to smooth the borders of each annotation as shown in
Figure 3.6(c) by checking which annotation type the direct neighbour triangles have.
For this we use a counter for each primitive type (5 counters). First each vertex of
the current triangle is checked and the corresponding counter is incremented. Then
for each of the maximum three neighbouring triangles the corresponding counter is
incremented for the curvature property of the triangle. So afterwards the sum over
all counters is between 3 and 6. The counter with the biggest value indicates now
the primitive type of the triangle. If two counters are equal, the order of decision
is the same as above.
Combining both smoothing algorithms the final result is shown in Figure 3.6(b).

3.3.3 Fitting primitives to faces

After the faces are combined as described in previous section each primitive annota-
tion needs to be approximated by the corresponding primitive type. Approximating
means fitting a plane, sphere or cone into the face and determining the features
(width, height, radius, ...) of it.

3.3.3.1 Fitting plane

A plane is defined as a rectangle lying in 3D space with a normal vector and
two values for the length of each side with the corresponding four corner coordinates.
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(a) Combined faces with smoothing disabled (b) Combined faces with smoothing by neigh-
bour and area

(c) Combined faces with smoothing by neigh-
bour

(d) Combined faces with smoothing by area

Figure 3.6: Combined faces with different smoothing approaches. plane (white), sphere
convex(red), cone convex (yellow), sphere concave (green), cone concave (blue)
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Normal vector First the plane normal vector is needed. It is estimated by the
following least squares method 3:
The formula for an arbitrary 3D plane which goes through (0, 0, 0) is a · x+ b · y +
c · z + d = 0. We wish to minimize the distance from each point to the plane. This
is noted as finding a, b, c and d which minimizes the equation:

f(a, b, c, d) =
∑ (a · xi + b · yi + c · zi + d)2

a2 + b2 + c2 (3.9)

The partial derivative of equation 3.9 with respect to d set equal to zero results
in

d = −(a · x0 + b · y0 + c · z0) (3.10)
where (x0, y0, z0) is the centroid of data. Substitute this back into 3.9 and you
get:

a(x− x0) + b(y − y0) + c(z − z0) = 0 (3.11)
So f(a, b, c, d) can be rewritten like this:

f(a, b, c) =
∑ (a(xi − x0) + b(yi − y0) + c(zi − z0))2

a2 + b2 + c2 (3.12)

or in matrix form:

v =

ab
c

 M =


x1 − x0 y1 − y0 z1 − z0
x2 − x0 y2 − y0 z2 − z0
· · ·
· · ·

xn − x0 yn − y0 zn − z0

 (3.13)

because

f(v) = (vTMT )(Mv)/(vTv) (3.14)
= vT (MTM)v/(vTv) (3.15)

To compute eigenvectors of A = MTM we use the singular value decomposition
(SVD) of M = UWV T . The column of V where W has its biggest singular value is
then the normal vector of the plane. To avoid that small triangles, which deviate
from the real normal vector, affect the estimated normal vector too much we use
weighted SVD:

Mw =


(x1 − x0) · w1 (y1 − y0) · w1 (z1 − z0) · w1
(x2 − x0) · w2 (y2 − y0) · w2 (z2 − z0) · w2

· · ·
· · ·

(xn − x0) · wn (yn − y0) · wn (zn − z0) · wn

 (3.16)

where wi is the area of triangle i divided by 3 to distribute the area to each vertex.
3http://mathforum.org/library/drmath/view/63765.html
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2D Bounding box Additionally to the normal vector the dimension and rotation
of the rectangle (2D bounding box of vertices) is needed. To fit a rectangle to 2D
data, we need to project 3D vertices of each triangle to a 2D plane perpendicular to
the normal vector. The orthonormal basis (N,U, V ) for the 3D plane is calculated
with:

tmp =

(0, 1, 0), if N.x > N.y,
(1, 0, 0), otherwise

(3.17)

V = normalized(tmp×N) (3.18)
U = N × V (3.19)

Each vertex vi can now be classified by a simple dot product within this orthonormal
basis as a 2D point p (where c = (x0, y0, z0) is the centroid of all 3D points and · is
the dot product):

pi =
(
U · (vi − c)
V · (vi − c)

)
(3.20)

The minimum area enclosing rectangle for these points is now calculated with the al-
gorithm as described at http://www.mathworks.com/matlabcentral/fileexchange/
31126-2d-minimal-bounding-box/content/minBoundingBox.m. This algorithm
first calculates the convex hull for all the points. We use the Graham Scan algo-
rithm for calculating the convex hull. With the edges of this convex hull, rotation
matrices for the 2D coordinate systems are created. With this collection of coor-
dinate systems the area for each enclosing rectangle aligned to the rotated axes
is calculated. The rectangle with minimal area and its corresponding coordinate
system is now our resulting rectangle (see Figure 3.7).

3.3.3.2 Fitting sphere

Fitting a sphere into given vertices is based on [Eberly, 2008].
A sphere is represented by (x− a)2 + (y − b)2 + (z − c)2 = r2 where (a, b, c) is the
sphere centre and r is the sphere radius. A precondition for this algorithm is, that
not all points are coplanar which is given in our case because otherwise the vertices
wouldn’t be recognized as part of a sphere.
The energy function to minimize the error of the sphere an the vertices is

E(a, b, c, r) =
m∑

i=1
(Li − r)2 (3.21)
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3 Segmentation

Figure 3.7: Fitted rectangle bounding box (dark grey) to an arbitrary plane face (red)

m is the number of vertices and Li =
√

(xi − a)2 + (yi − b)2 + (zi − c)2. The partial
derivative of 3.21 with respect to r set equal to zero yields:

r = 1
m

m∑
i=0

Li (3.22)

Partial derivative of 3.21 with respect to a set equal to zero:

a = 1
m

m∑
i=1

xi + r
1
m

m∑
i=1

∂Li

∂a
(3.23)

Partial derivative of 3.21 with respect to b set equal to zero:

b = 1
m

m∑
i=1

yi + r
1
m

m∑
i=1

∂Li

∂b
(3.24)

Partial derivative of 3.21 with respect to c set equal to zero:

c = 1
m

m∑
i=1

zi + r
1
m

m∑
i=1

∂Li

∂z
(3.25)

This can be simplified as:

a = x+ LLa =: F (a, b, c) (3.26a)
b = y + LLb =: G(a, b, c) (3.26b)
c = z + LLc =: H(a, b, c) (3.26c)
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where

x = 1
m

m∑
i=1

xi (3.27a)

y = 1
m

m∑
i=1

yi (3.27b)

z = 1
m

m∑
i=1

zi (3.27c)

L = 1
m

m∑
i=1

Li (3.27d)

La = 1
m

m∑
i=1

a− xi

Li

(3.27e)

Lb = 1
m

m∑
i=1

b− yi

Li

(3.27f)

Lc = 1
m

m∑
i=1

c− zi

Li

(3.27g)

By using fixed point iteration we can solve these equations. The start conditions
are: a0 = x, b0 = y and c0 = z. Iteration is done over ai+1 = F (ai, bi, ci), bi+1 =
G(ai, bi, ci), ci+1 = H(ai, bi, ci) for i ≥ 0 until |ai−ai−1|+ |bi− bi−1|+ |ci− ci−1| = 0.
To ensure that the iteration stops we use a maximum iteration count of 500.
An example of a fitted sphere is shown in Figure 3.8(b)

(a) Original spoon segmented (b) A sphere (green) fit into the concave area
of the spoon

Figure 3.8: A simple spoon coloured by primitive annotations: plane (grey), sphere con-
vex (red), sphere concave (green), cone convex (yellow), cone concave (blue)
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3.3.3.3 Fitting cone

A cylinder is a special form of a cone where bottom radius and top radius are equal.
So the following algorithm is the same for cone and cylinder. Additionally we don’t
need to distinguish between convex and concave because the cone has always the
same shape, only a Boolean indicates if it is convex (outside is visible) or concave
(inside is visible).
A cone consists of a generating line which goes through the cone centre, a height
and two radii for bottom and top radius.

Find generating line The generating line is the line where all surface points per-
pendicular to it have the same distance. So in ideal case it goes through the centre
of the bottom plane, through the centroid and through the centre of top radius (see
Figure 3.10(c)). To get this generating line first we need points which define this
line. These points are the intersection points of the inverse vertex normal scaled
by the reciprocal of the curvature ( 1

curvature
= radius). Due to some imprecision it

may be that these lines don’t intersect but meet close to each other. To get this
point with shortest intersection route we use the following algorithm 4: A point on

P1

P2

P3

P4

Pb

Pa

Figure 3.9: Finding shortest line segment (Pa,Pb) between two lines (P1,P2) and(P3,P4)

line a respectively b is defined as

Pa = P1 +mua(P2 − P1) (3.28a)
Pb = P3 +mub(P4 − P3) (3.28b)

4http://local.wasp.uwa.edu.au/~pbourke/geometry/lineline3d/
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wheremua andmub range from negative to positive infinity and indicate the position
of Pa and Pb on each line. If these points lie on the line, mua and mub are between
0 and 1.
Due to the fact that the line segment is perpendicular to the two lines we have the
following two conditions (· = dot product):

(Pa − Pb) · (P2 − P1) = 0 (3.29a)
(Pa − Pb) · (P4 − P3) = 0 (3.29b)

Substituting 3.28 into 3.29 gives:

(P1 − P3 +mua(P2 − P1)−mub(P4 − P3)) · (P2 − P1) = 0 (3.30a)
(P1 − P3 +mua(P2 − P1)−mub(P4 − P3)) · (P4 − P3) = 0 (3.30b)

expanded to (x, y, z) coordinates:

d1321 +muad2121 −mubd4321 = 0 (3.31a)
d1343 +muad4321 −mubd4343 = 0 (3.31b)

with dmnop = (xm − xn)(xo − xp) + (ym − yn)(yo − yp) + (zm − zn)(zo − zp). 3.31
solving for mua and mub gives the final result:

mua = (d1343d4321 − d1321d4343)/(d2121d4343 − d4321d4321) (3.32a)
mub = (d1343 +muad4321)/d4343 (3.32b)

Withmua andmub we can determine the two points Pa and Pb which are the needed
intersection points (see Figure 3.10(b)). This is repeated for each combination of
previously defined lines to get all intersection points. If no intersection points are
found (if all lines are parallel) we use the endpoints of each line as intersection
points.
Through these points we now try to best fit a line, which is our generating line, by
least squares fitting and SVD. We have already discussed in Section 3.3.3.1 fitting
a plane into 3d points. We know that SVD M = UWV T has an orthogonal base in
V . For fitting a plane we took the column of V with biggest singular value. Due to
the orthogonal basis the direction vector of best fit line (our generating axis) is the
column in V with smallest singular value. This time we don’t use weights because
intersection points of smaller triangles should be the same as intersection points of
bigger triangles. The resulting line already set to the correct length (see following)
is shown in Figure 3.10(c).
On very short cones it may happen that the best fitting line through the intersection
points is perpendicular to the correct generating line. Therefore we additionally take
the vector with biggest singular value and calculate for both directions the variance
of the perpendicular distance between each vertex to the generating line (which is
our radius) and finally take the direction with smallest variance.

25



3 Segmentation

(a) Lines for intersection points (dark grey)
are in opposite direction of vertex normals
(dark green)

(b) Intersection points (green) near generat-
ing line

(c) generating line (turquoise) and centroid
(yellow)

(d) Fitted cylinder (yellow)

Figure 3.10: Part of a cylinder where a pie is cut out, describing fitting of cone annota-
tion.
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Getting radius and height The radius r from a vertex v to the generating axis
D is the perpendicular distance from this axis to the vertex. Additionally we need
this point Pp projected on the generating axis for calculating the total height of the
cone:

dot = (v − c) ·D (3.33)
Pp = c+ dot D (3.34)
r = ||Pp − v|| (3.35)

Then we use following Algorithm 3 for weighted radius and height calculation.
Weight wv is the area of triangle i divided by 3 to distribute the area to each vertex
v. The bottom height may be different to top height because the centroid may
be shifted up or downwards in direction of generating axis for example on the cup
model in previous sections. This is because the cup model contains a lot more
points on top. This error will be corrected by taking arithmetic average of bottom
and top height and shifting the centroid up or downwards on the generating line.

The weighted radius and height explains why on Figure 3.11 the cone (yellow) hasn’t
the full length of selected red part. This is a desired behaviour to avoid that small
faces with different direction have too much impact on the resulting cone direction
and its radius.

Figure 3.11: Spoon (same as in Figure 3.8(a)) where handle is fitted by a cone.
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Algorithm 3: Calculate top and bottom radius and height
radiusTop ← 0
radiusTopWeight ← 0
heightTop ← 0
radiusBottom ← 0
radiusBottomWeight ← 0
heightBottom ← 0
for all vertices in cone annotation do
Compute dot and r for vertex v
if dot < 0 then
{vertex is bottom}
radiusBottom ← radiusBottom + r wv

radiusBottomWeight ← radiusBottomWeight + wv

heightBottom ← heightBottom + |dot| wv

else
{vertex is top}
radiusTop ← radiusTop + r wv

radiusTopWeight ← radiusTopWeight + wv

heightTop ← heightTop + |dot| wv

end if
end for
heightBottom ← heightBottom / radiusBottomWeight
radiusBottom ← radiusBottom / radiusBottomWeight
heightTop ← heightTop / radiusTopWeight
radiusTop ← radiusTop / radiusTopWeight
c ← c+D heightT op−heightBottom

2 {fix position of centroid}
D ← D heightT op+heightBottom

2 {Set length of generating axis to average height}
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The segmented mesh and primitives alone don’t provide yet much useful information
for the robot. Therefore we have to interpret the meaning of primitives for the model
so that the robot gets additional information for manipulating objects. In this work
we use two different interpretation methods: directly in Java or with Prolog. In
Java we do more complex reasoning where heavy interaction with underlying data
structure is needed. There is also the possibility to start the Java application with
JPL Prolog Interface (delivered with SWI Prolog) which allows calling Java methods
from Prolog or vice versa. With this interface it is also possible to do simple (or
even complex) interpretation directly in Prolog.
In the following sections we present examples for interpreting in Java and Prolog.
For additional interpreting possibilities please refer to Section 7.

4.1 Java

In Java we implemented simple container detection. A container is a construct
where some kind of wall exists and a bottom plate closes this construct. In our
implementation we only consider cones, where a plane surface is at the bottom or
top of the cone, which is the case for cups or buckets, as containers. Additional
container types are described in Section 7.
So first we need all primitive annotations which are cone annotations and only those
cones which are concave. Because containers can only be on the inside of an object
and therefore the cone has to be concave.
The next step is to check for each cone found, if it has a top and/or a bottom cap.
A cap is defined as a PlaneAnnotation which lies perpendicular to the generating
line of the cylinder and has approximately the area to cover the end of the cone.
Additionally the position of the plane must be near the end of the cylinder to avoid
wrong detections.
So we iterate over each PlaneAnnotation and check if the generating line intersects
with the plane. If it does we know that the plane lies at least somewhere in the
direction of the generating line. Next we check if the angle between generating
line and plane is approximately 90 degrees. If this matches, we already have the
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intersection point from intersection checking which is the point where the generating
line intersects with the plane. This intersection point is then used to determine the
distance between the end of the cone and the plane by subtracting the cone centroid
which results in a vector where the length is exactly the distance from centroid to
plane. We defined a plane as a cap if it lies between 70% and 130% of cone height.
If the distance is in this predefined range we know that the plane is a cap.
The last step is to determine if the cap is on bottom or top of the cone. This can
be achieved by using the dot product of the distance vector between centroid and
intersection point and the direction vector of the cylinder. If the result is negative,
the plane forms a bottom cap, otherwise a top cap.
But a cone may have a bottom and a top cap. If this happens it isn’t a container
anymore because then it is a solid object. Therefore we have to continue iteration
over all planes to check if the other side of the cone is open or covered by another
plane.
The resulting container for the cup is shown in Figure 4.1(b). In this case the
volume of the container equals the volume of the cone. With this knowledge the
robot can for example find out how much fluid fits in the cup or if it knows that
there is already fluid in the cup it knows the maximum amount of how much it may
be.
Another use case could be the following: In a room there are two buckets and a
sink with water. The task for the robot is to get a bucket with 4 litres of water.
By fitting CAD models to the buckets and analysing them, the robot finds out that
one bucket can hold 3 litres, the other one 5 litres. Assuming the robot has the
appropriate knowledge, it can solve the problem with following steps:

1. fill 5L bucket

2. fill 3L bucket with water from 5L bucket. So in 5L bucket remain 2L

3. pour the 3L away

4. fill the remaining 2L from 5L bucket to 3L Bucket.

5. fill 5L bucket again

6. fill 3L bucket until it is full which means 1L from 5L bucket to 3L bucket.

7. now the 5L bucket contains 4L of water
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(a) Lateral cut of a cup. The container is a
combination of concave cone (blue) and bot-
tom plate (purple).

(b) The resulting container in the cup

Figure 4.1: On a cup the container is composed of a concave cylinder and a plane.

4.2 Prolog

We use the rosprolog 1 package for ROS which is a wrapper around SWI Prolog
and has the advantage to automatically load Prolog initialization scripts from ROS
packages. This package in combination with rosjava_jni 2 allows us to execute our
Java application in ROS environment and additionally provides the full power of
Prolog for reasoning.
In Prolog we implemented some basic operators for executing the application
with and without GUI and analysing models directly by file path or URL
(mesh_reasoning_path) or by an identifier (mesh_reasoning) from KnowRob
knowledge database (see also Section 5). Additionally there are operators for
getting a list of specific annotation types, for example a list of all plane an-
notations. There is also the possibility to highlight one or more annotations
(mesh_reasoning_highlight) in the GUI from within Prolog (see Figure 4.2) and
of course it is possible to clear all highlighted annotations.

1http://www.ros.org/wiki/rosprolog
2http://www.ros.org/wiki/rosjava_jni
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Figure 4.2: Left side: single highlighted sphere annotation from within Prolog. Right
side: all sphere annotations highlighted from within Prolog.

4.2.1 Supporting planes

One of the reasoning tasks we implemented in Prolog is searching all supporting
planes. A supporting plane is a flat or nearly flat surface whose normal vector
is approximately in the opposite direction of earth’s gravitational force which is
our z-axis. For calculating the angle between normal vector and z-axis we take
the absolute value of arccosine of z component of the normal vector: angle =
|arccos(n.z)|. If angle is in the tolerance of 10 degrees the plane is a supporting
plane.
Here you also have to consider the current pose of an object if it is available.
Storing and getting the current pose of an object is implemented in KnowRob.
So for additionally considering the pose of an object to determine if a plane is a
supporting plane we check if a pose is available. If yes, then each plane normal is
rotated by the pose rotation matrix before calculating its angles.
The supporting planes allow a robot to search for a place where it can put down an
object with a specific size.
With commands shown in Listing 4.1 and 4.2 a model is parsed and all supporting
planes are highlighted as shown in Figure 4.3.
roscd knowrob_mesh_reasoning/
rosrun ro sp ro l og ro sp ro l og knowrob_mesh_reasoning
Listing 4.1: Starting java application knowrob_mesh_reasoning from command line

?− mesh_reasoning_path ( ’ /path/ to /model . kmz ’ ,Mr) ,
mesh_find_annotations (Mr, ’ Plane ’ ,Ann) .
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Mr = @’J#00000000000046510392 ’ ,
Ann = @’J#00000140426307191384 ’ .

?− jp l_set_element ($Ann ,P) , mesh_is_supporting_plane (P) ,
mesh_reasoning_highl ight ($Mr ,P) .

P = @’J#00000000000047006640 ’ ;
P = @’J#00000140425700603912 ’ ;
P = @’J#00000140425700603832 ’ ;
P = @’J#00000140426307191480 ’ ;
P = @’J#00000140426307191464 ’ ;
P = @’J#00000140426036122152 ’ ;
P = @’J#00000140426036122120 ’ ;
P = @’J#00000140426036122072 ’ ;
P = @’J#00000140426036122056 ’ ;
P = @’J#00000140426036122024 ’ ;
P = @’J#00000140426036121976 ’ ;
f a l s e .
?−

Listing 4.2: Searching all supporting plane annotations and highlighting them.

Figure 4.3: A shelf and all supporting planes highlighted by Prolog interface.
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4 Interpretation

4.2.2 Handle

Another reasoning task implemented in Prolog is getting the handle(s) of an object
(mesh_find_handle). A handle is a part of the object where it should most likely
be carried. Currently we consider a handle as a cone and most times the handle is
the longest cone (or cylinder) of an object. So we try to find the longest cone of
the object. To do this, we first create a list with all cone annotations. This list is
then sorted by the probability for each cone that it is a handle. This probability is
calculated in our case by using area coverage, cone height and optionally minimum
and maximum radius.
Area coverage is a value bigger than 0 and indicates how exactly the fitted primitive
covers the area of all containing triangles. So if area coverage is 1 (which would
be an optimal fitted cone), the fitted primitive has exactly the same surface area
as all including triangles together, or if the area coverage is 0.5 it means that the
triangles form a lateral cut cone. We defined a threshold of 0.6: if area coverage is
below this threshold it is more likely that it isn’t a handle. Additionally it is more
likely that longer cones are handles.
Minimum and maximum radius can be used to define the radius grippable for the
hand to avoid cones with radius bigger than the hand can grip declared as handles.
The compare function is shown in Algorithm 4. As a future improvement a function
of all the variables (coverage, height, minimum and maximum radius) could be used
to improve the order for example to avoid hard boundaries for minum and maximum
radius.
Two examples for found handles are shown in Figure 4.4.
The item at first position of the list is then our handle. We use this approach of
a sorted list to allow a higher decision maker to choose also another handle if for
example the first one failed to grab or isn’t reachable.
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4 Interpretation

Algorithm 4: Comparison of two handles for their probability. W1 and W2 are
the two annotations to compare, Comp is the result for calling method to reorder
the items
Cov1 ← AreaCoverage(W1)
Cov2 ← AreaCoverage(W2)
Rad1 ← AreaRadius(W1)
Rad2 ← AreaRadius(W2)
if MinRad and MaxRad are available then
Rad1Ok ← Rad1 > MinRad and Rad1 < MaxRad
Rad2Ok ← Rad2 > MinRad and Rad2 < MaxRad

end if
if Cov1 < 0.6 and Cov2 ≥ 0.6 then
Comp ← >

else if Cov1 ≥ 0.6 and Cov2 < 0.6 then
Comp ← <

else if ¬ Rad1Ok and Rad2Ok then
Comp ← >

else if Rad1Ok and ¬ Rad2Ok then
Comp ← <

else
H1 ← Height(W1)
H2 ← Height(W2)
if H1 < H2 then
Comp ← >

else
Comp ← <

end if
end if
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Figure 4.4: Top: Handle found on a spoon, Bottom: Handle found on a spatula
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5 Integrating into Knowlege-Base

How the semantic knowledge on CAD models can be integrated into knowledge
bases has already been addressed a bit in Section 4.2. In this chapter we will
expand on this integration. We focus primarily on KnowRob, but the basic ideas
should be easy transferable to other knowledge bases.

5.1 KnowRob integration

We used in our KnowRob knowledge base a combination of ROS, Prolog and Java
to provide reasoning tasks to the robot. The basic structure of ROS is divided into
executable nodes, which provide messages to a specific topic. Another node can
subscribe to such topic and receive all messages. With this concept one or more
robots can communicate with a node at a totally different location.
Our application can either be executed directly as a Java application (where Prolog
predicates wouldn’t be available) or as a ROS node in combination with Prolog
(rosprolog package). We chose rosprolog because KnowRob already uses rosprolog
and so we can guarantee a flawless integration into the existing knowledge base.
To execute Java from within rosprolog we use the JPL library delivered with SWI
Prolog. With this combination we can start our Java application from Prolog and
call all available method members of a Java class: for example start parsing and
segmentation and getting all cones or spheres for further reasoning in Prolog.

The knowledge base in KnowRob is mainly stored as OWL structured files where
different classes for object types exist and each object instance and class has a
unique identifier. We have added the possibility to assign to each class or instance
a CAD model by the property pathToCadModel. As in Section 7.1 described a fu-
ture improvement could be the integration of 3D Net into the knowledge base. 3D
Net provides the possibility to find the best matching CAD Model out of a database
of different models to an object scanned with 3D range scanners. So if 3D-Net finds
a model it could set the pathToCadModel property and it would make no difference
for our workflow.
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5 Integrating into Knowlege-Base

So if a robot needs information about a CAD model it starts our reasoning ap-
plication with either the class identifier or instance identifier. With this identifier
we can automatically determine the path to the CAD model and start the seg-
mentation and semantic interpretation task. After this task is finished the robot
or another reasoning task can access this information by the Prolog interface or
execute additional reasoning predicates as described in Section 4.2.
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6 Evaluation

In this chapter we show some example segmentations and semantic interpretations
on different types of CAD Models from different databases, most of them are from
3D-Net or Google 3D Warehouse. At the end we discuss the results and show
where the algorithm may have problems on segmentation and interpretation.
The evaluation is divided in multiple sections for each group of models.

Here is a description for different colours in the evaluation:

Purple Plane annotation

Yellow Cone or cylinder, convex

Blue Cone or cylinder, concave

Red Sphere, convex

Green Sphere, concave

Dark green Container annotation

Orange line Bounding box

Smoothed colours Colour by curvature

Please note that there is a small problem with vertex normals in inverse direction
and therefore convex and concave is sometimes flipped (see Section 6.2.1).
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6.1 Examples

6.1.1 Bottles

Figure 6.1: A plastic bottle segmented, the cap as cone annotation, the handle selected
by Prolog

Figure 6.2: Beer bottle segmented with bounding boxes, the handle selected with Prolog.
Here the vertex normals are inverted. As you may see, the bounding boxes of both groups
provide an additional segmentation into bottle and cap.

40



6 Evaluation

Figure 6.3: Another plastic bottle segmented, curvature colours, the handle selected by
Prolog

Figure 6.4: A sphere shaped bottle segmented. As you can see in the second image, the
bottle neck is segmented into planes instead of a cone. This is because at the bottle neck
the vertices aren’t shared (see 6.2.2)

Figure 6.5: Some kind of cognac bottle segmented. As you can see in the third image, the
curvature of the body is more red than yellow and therefore recognized as sphere instead of
a cylinder. An improvement to the algorithm could be to refine the margin between cone
and sphere.
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6 Evaluation

Figure 6.6: A wine bottle with inner and outer side segmented. The second images shows
the handle found by Prolog, the third image shows the inner cone of the bottle. (normal
vectors inverted)
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6.1.2 Bowls

Figure 6.7: A bowl with a small socket. In the second and fourth image you see the fitted
spheres at outer and inner side.

Figure 6.8: Bowl in shape of a square.

Figure 6.9: Bowl with frame and fitted sphere inside.
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Figure 6.10: Bowl with rounded edge. Left side: segmented, right side: curvature colours.
(Normal vectors inverted)

6.1.3 Cups and Glasses

Figure 6.11: Cup with rounded edges. Here not all containers are found because the
bottom plate is too small. On the right side the fitted cylinder is shown.

Figure 6.12: Cup in sphere form. Middle: coloured by curvature, right side: sphere fit
inside
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Figure 6.13: Container found inside the cup. The outside isn’t recognized as cone because
the curvature indicates that there are planes (middle image, white colour). Last image
shows the Voronoi Area for each vertex normal by the size of the sphere.

Figure 6.14: It seems that the cone shape of this glass is too flat to recognize it as a cone.
At least the curvature colour is very bright. But the most important part, the handle is
found (last image).

Figure 6.15: Glass in shape of a sphere. Here again the vertex normals are inverted, but
the handle is found anyway (last image).
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6.1.4 Kitchen utensils

Figure 6.16: Fork segmented into cones and spheres with bounding boxes for each group.
The creator of this model already segmented the handle form the body. Second image is
coloured by curvature. Last image shows the handle by Prolog.

Figure 6.17: The fit cone for this dipper isn’t very accurate. This is due the fact that
the reference for the cone is only one triangle.

Figure 6.18: A cooking pot segmented into primitives. The second image shows the
container marked as dark green. The last image shows the fit plane for upper edge.
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Figure 6.19: A sphere shaped pan with bounding boxes and fit sphere. Here the handle
isn’t recognized as a cone because there is too much noise due to the detailed structure.

6.1.5 Tools

Figure 6.20: A hammer segmented and handle selected by Prolog

Figure 6.21: Another hammer segmented. Here the vertex normals on the handle are
inversed. But the handle is found anyway.
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Figure 6.22: With this screwdriver, finding the handle didn’t work because the shank is
longer than the real handle.

Figure 6.23: The bounding boxes already segment this socket wrench into handle and
body. Here finding the Handle with Prolog also worked (last image).

Figure 6.24: M3 screw with screw thread modelled on the shank. The second image
shows curvature colours, the third shows the cone on the shank.

Figure 6.25: Another screw without screw thread. The last image shows the principle
directions of the curvature. Blue is Maximum curvature, orange Minimum curvature.
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Figure 6.26: A simple screw nut. Second image shows the fit cone, the last one the
principle directions of the curvature. Blue is Maximum curvature, orange Minimum cur-
vature.

Figure 6.27: A Kataba (Japanese wood saw) with selected handle and the fitted plane on
the cutting face.
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6.1.6 Furniture

Figure 6.28: A baby bed with a lot of cones and planes. The second image shows a fit
cone. The last image all supporting planes from Prolog.

Figure 6.29: A book shelf with rounded front faces. The last image shows all supporting
planes by Prolog.
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Figure 6.30: A simple profiled metal with holes and rounded edge. The first image
additionally shows vertex normals.

Figure 6.31: A plate with holes. In the second image you can see the fit plane for the
plate.

Figure 6.32: A rounded table with bounding boxes for each group defined by the designer.
The second image shows the handle detected by Prolog, the last one all supporting planes
which are on the wrong side because vertex normals are inverted.

Figure 6.33: A simple table with only plane annotations. The last image shows the single
found supporting plane.
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6.2 Discussion

As it can be seen in previous section, some of the models are nearly perfect seg-
mented and interpreted, and others have some small or even bigger errors. This
depends heavily on the complexity of each model and the detail of modelling. The
biggest problem is to determine the correct vertex normal vectors and out of them
the correct curvature. In Figure 6.34 you can see some examples for failed segmenta-
tion. The first image shows a cup where the heart isn’t drawn with texture, instead
the modeller used triangles to draw it. Additionally this cup isn’t very smooth and
therefore our algorithm didn’t find any cone for the body of the cup. The second
image, the chair, is another model where our algorithm had difficulties to find all of
the correct parts. Additionally here is the problem of inverted vertex normals (see
Section 6.2.1).
Currently there is also sometimes a problem with finding the best fit cone for a cone
annotation. It happens sometimes that the cone is in the perpendicular direction
if the cone annotation has a very unregularly shape or a lot of small triangles with
some noise.
But on most of the models the algorithm delivered for the most interesting parts,
the handles and supporting planes, quite accurate results. Even on some complex
models such as Figure 6.24 (Screw with screw thread) the algorithm hasn’t been
disturbed by the screw thread and found a cone on the shank.
In summary it depends on the level of detail and cleanness of how good models are
segmented and primitive annotations can be fit into them.

Figure 6.34: Some examples where curvature calculation failed.
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6.2.1 Vector inverted

If no vertex normals are given for triangulation data, we have to calculate those
ourselves (see Section 3.2.1). Here it is difficult to decide in which direction the
vertex normal should point, which means to decide which side of the face is visible
and which one is hidden. In our algorithm we only calculate the vertex normal
vector without taking into account the face direction. Most times this results in the
correct vector direction, but sometimes this may also fail as you can see on different
previos evaluation examples.

6.2.2 Single vertex or shared?

Normally 3D Data is stored in the following format: first you define the number
of vertices and number of faces, then an indexed list of all vertex coordinates is
given and then there is the list of faces which reference to vertex indices. Here it is
possible to use a compact representation by sharing vertices, for example reference
vertex i on all neighbouring faces which have a vertex at exactly the same position,
or use a representation, where vertices aren’t shared. No shared vertices means,
that if you have some triangles with a vertex at the same position each triangle has
its own vertex referenced. So you may have in the vertex list duplicate entries of
the same position.
The problem here is that if we calculate the vertex normal for each vector and they
aren’t shared we get wrong results, because the resulting vertex normal isn’t an
average value of adjacent faces, but is only the direction for the single adjacent
face. You can find an example for this problem in Figure 6.35 and Figure 6.36.
It would be possible to programmatically search for identical vertices and combine
them in our algorithm, which would rise another problem that you can’t distinguish
between important parts where planes and cones or legs have the same coordinates
but have a different meaning (see Figure 6.37).
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Figure 6.35: Red bowl: shared vertices. Curvature calculation is correct. Green bowl: no
shared vertices, you can see at each vertex more than one green line indicating the vertex
normal.

Figure 6.36: Another example for not shared vertices. The curvature calculation totally
fails.
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Figure 6.37: Model where all vertices are shared, even those of different meaning. Here
the algorithm sets vertex normals for the shared vertices which impacts also the vertex
normals of those triangles which are planes. So in the second image coloured by curvature
you can see, that the planes are colored between yellow and red instead of white.
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7 Conclusions

In this work we have shown that using CAD models as an additional knowledge
source could be a big advantage for a robot. Instead of trying to infer properties of
objects directly in 3D point cloud data, it is more efficient and accurate to search
the corresponding CAD model and analyse this instead.
By segmenting these models and fitting primitives we got a base structure for
further semantic interpretation. We provided semantic interpretation for some
interesting tasks as finding containers, supporting planes or handles. But with
these primitives much more and also more complex reasoning is possible.
This new knowledge gives the robot additional capabilities, for example selecting
a vessel with appropriate size or inferring, where objects can be grasped optimally
and where they can be put down.
Probably everyone remembers his childhood where there was a toy in form of a
plate with different shaped holes: round, triangle, star and rectangle. Additionally
you got wooden blocks in the same shape and had to stick them through the
correct hole. Even this task the robot is now able to solve by analysing the objects.

In the evaluation you can see that the segmentation and fitting primitives is working
for different types of objects and also for different model complexity. But there are
some special cases where the segmentation and curvature estimation didn’t work as
expected. Here additional improvement is necessary.

7.1 Future Improvements

Here we provide some thoughts about future improvements for our application,
which would make our application better structured or adding new features or
improves the segmentation process.
The most important feature is the integration of 3D-Net to automate CAD model
search. 3D-Net is used to find the correct CAD model for an object in 3D point
cloud data. Without this feature the robot wouldn’t be able to know which model
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it has to analyse.

To make the application easier expandable, a complete migration to the Apache
UIMA project could be an option. We structured our application by some concepts
of UIMA, but aren’t currently using it directly. The complete migration would
also allow simple multi cluster analysis or simply considering different information
sources such as annotations by human and CAD models and combine them into a
final result.
Manually created annotations by human on CAD models could be another useful
extension to annotate information on CAD models which can’t be gathered by
simply analysing the CAD model. For example it may be useful to annotate on the
models in Figure 6.25 (screw) and Figure 6.26 (screw nut) that the cone actually
isn’t flat, but has a screw thread. This would allow the robot to infer that the
screw nut has to be rotated around its axis to stick it on the screw. Or if you have
a model of a portable boiling plate you can annotate which region of the plate gets
hot, or for a plier you could annotate that there is an axis which allows opening
and closing it.
All this information can then be integrated in robot motion and action planning to
automatically detect subtasks: If the robot has the task description “Put the nut
on the screw” and additionally knows that both screw threads should be joined,
it would infer that both axes should match and the screw has to be rotated on
contact with the nut.

Most CAD modellers do already some kind of segmentation by grouping special
parts of an object into subgroups (see some examples in Section 6.1). This
information isn’t yet used by our algorithm, but should be integrated for even
better segmentation. Another unconsciously given segmentation information is the
colour or texture of an object. Different colours or texture types normally mark
different parts of an object. This could also improve our algorithm.

To avoid repeatedly reanalysing of already analysed models it would be useful to
store the segmentation and interpretation result somewhere in the knowledge base.
For example the variables, such as centre, radius, height and dimension for all the
spheres, cones and planes could be stored to reuse it, when the robot sees the
model again.
Another improvement regarding the knowledge base would be, to define with OWL
restrictions special properties. For example a spoon could be described by a long
cone and a part of a sphere attached to it. With this OWL restrictions the robot
has the capability to identify unknown objects or CAD models for example as a
spoon. OWL restrictions would also be useful in the opposite direction: if some
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tools are placed on a table and the robot needs a spoon, it can analyse all the
models and decide that the second object is the needed spoon.

Currently we have for cones and sphere only a percentage value for area coverage.
But if the area coverage is for example 25% (only a quarter of a cylinder)
we don’t store the information where this quarter is exactly located, we only
store its radius, height and centroid. The same problem is with spheres. Here
an improvement would be to describe with four angles from where to where
the area of the fitted cone or sphere is covered, by using the spherical coor-
dinate system 1. Two angles indicate the minimum and maximum θ angles,
the other two minimum and maximum ϕ angles of the vertices on the sphere.
This concept can also be simply mapped to cones, where you use instead of two
θ angles the distances between the equator and vertices on both sides of the equator.

To improve container detection, additional feature detection has to be implemented
to detect open squared boxes or squared boxes with rounded corner or even con-
tainers which are combinations of cones, planes and spheres.

7.2 Challenge

The most challenging part of this work was the segmentation. It took more than
2/3 of the time to get satisfying results for curvature calculation and then fitting the
primitives. Therefore the interpretation part is a bit shorter, but with this segmen-
tation we have some useful information for expanding the whole interpretation part
in future work.
For human beings it seems very easy to say that the model consists of a cone and a
sphere, but machines yet don’t have this capability. The trained eye of the human
immediately recognizes curves and corners. But machines have to analyse each de-
tail to determine the shape of an object. If there is additionally a detailed structure
on the object surface it gets even more complex.
Also the semantic interpretation isn’t an easy task. Containers or handles may
have a lot of different shapes. For us humans, our experience tells us where to grasp
specific objects and which shapes a container may have. But robots don’t yet have
this knowledge and therefore have to rely on some standardized shapes which aren’t
flexible enough for all the possibilities.
But I am sure the human being will even solve this problem in near future.

1https://en.wikipedia.org/wiki/Spherical_coordinate_system
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